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Abstract
The use of fault-tolerant, real-time systems for the control of life-critical processes is

becoming increasingly common, with examples including flight and nuclear reactor

control systems. In such systems, the overhead associated with managing redundancy,

communication, and task scheduling is critical due to real-time constraints imposed by the

application; missed time deadiines can be viewed as system failures, with results as

consequential as hardware failures.
The Fault-Tolerant Parallel Processor (FTPP) was developed by Draper Laboratory as

a fault-tolerant, real-time computing platform. This thesis analyzes the FTPP prototype

operating system overhead through the use of empirical performance measurement and
two performance models based on these measurements. One model is developed to

predict the operating system overhead under various configurations and workloads;

accurate prediction of overhead provides confidence that real-time constraints can be

satisfied. Because the system communication overhead may vary depending upon the

amount of contention by Processing Elements for service by the Network Element, a

second model is developed to account for performance delays that may result from this

contention. When such performance analysis and modeling are an integral part of a

concurrent build-analyze-improve methodology, performance bottlenecks can be cost-

effectively removed at an early stage in development.
Empirical performance data show that the prototype FTPP Ada operating system (OS)

overhead accounts for 22% of each 10 msec minor frame, excluding 10, for a given

system configuration. The majority of the total overhead is due to communication

overheads. The OS overhead model predicted the total overhead within an eight percent

error. Simulation of the contention model showed that the most critical parameter in
reducing the effect of contention is the time needed to transfer the packets from the local

memory of the Processing Element to the Network Element.
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Chapter 1

Introduction

1.1 Problem Statement

The use of fault-tolerant, real-time systems for the control of life-critical processes is

becoming increasingly common. Examples include flight control systems and nuclear

reactor control systems. These types of applications have two common requirements.

First, they have tasks which must meet hard deadlines; a missed deadline is as disastrous

as total system failure. Second, they must be extremely reliable. This requires the use of

massive redundancy to achieve high reliability goals.

The Fault-Tolerant Parallel Processor (FTPP), developed by Draper Laboratory. was

designed to tolerate hardware faults and to perform within the real-time constraints

required by an application. FTPP achieves high reliability by combining Byzantine

resilience with the use of redundant, concurrently executing processors. The FTPP

scheduler uses a Rate Group paradigm to ensure that task execution times are predictable

within guaranteeable worst-case limits.

As with other fault-tolerant, real-time systems, FTPP obtains high reliability and

predictable timing characteristics by paying a price. The added cost is not only due to the

redundant processor boards, it also is a result of the computing resources needed to

manage the system's redundancy and real-time operation. Operating system activities

such as voting the output of a redundant processing group, monitoring the execution

times of tasks, and reconfiguring the system due to a failed processor, require computing

time that could otherwise be used by application tasks.

The amount of operating system overhead determines the amount of time available

for application tasks. This overhead should be minimal and as predictable as possible to

maintain real-time requirements. FTPP requires a mechanism that allows accurate

prediction of the amount of operating system overhead under various configurations and

workloads. Such a mechanism could be used to determine the amount of time available

to execute application tasks.
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1.2 Objective

This thesis aims to develop two models (based on empirical performance data) that

can be used to accurately predict the operating system overhead. The first model, called

the operating system overhead model, uses performance data to estimate the overhead of

various operating system tasks. This model assumes that processing elements do not

have to contend for the shared system resource known as the Network Element. The

second model, called the contention model, determines the effect of contention on the

Rate Group Dispatcher, which is the only operating system task that is affected by

contention.

In addition to their use in the models to predict available processing time, the

collected performance data have the useful side effect of drawing attention to potential

performance bottlenecks in the operating system. When performance measurements are

collected concurrently with operating system development, these bottlenecks can be

removed at an early and cost-effective stage of development. Figure 1- 1 shows the use of

performance analysis in eliminating performance bottlenecks.

implement
code

evaluate system via optimize
performance analysis

<performance no
"a•dequate?.

Figure 1-1. Use of Performance Analysis in Removing Performance Bottlenecks
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1.3 Approach

This study begins with an overview of some fault tolerance fundamentals, including a

discussion of Byzantine resilience, in Chapter 2. Chapter 3 describes both the FTPP

hardware and operating system. In Chapter 4, the overhead model and the contention

model are described; in addition, the results of the contention model simulation are

presented. A description of the methodology used to collect performance data is given in

Chapter 5, and Chapter 6 summarizes the data collected using this methodology. The

application of the performance data to the operating system overhead model results in the

detailed overhead model of Chapter 7. Finally, a summary of significant results and

suggestions for future research are given in Chapter 8. Figure 1-2 shows the structure of

the main body of this thesis. In the appendices, an acronym list and source code for the

contention model simulation and the statistical analysis program are given.

Chapter 2Fault ToleranceFundamentals

Chapter 3
FTPP System
Description

Chapter 4 Chapter 4 Chapter 5
Contention Model & High-Level Description Performance Measurement
Simulation Results of OS Overhead Model Methodology

ChePerformance Measurement
Results

Chapter 7S~Detailed OS Overhead

Chapter 8
Conclusions

Figure 1-2. Thesis Structure
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Chapter 2

Fault Tolerance Fundamentals

Applications having a high cost of failure, such as an aircraft control system, require

the use of highly-reliable computing systems. Since it is impossible to guarantee that

failures will not occur within a system, such systems need to be designed to tolerate any
component failure. The discipline of fault-tolerant computing focuses on effective and

efficient methods to achieve dependability in the presence of faults. This chapter

provides a general discussion of some of the fundamentals of fault tolerance. Section 2. 1

gives an overview of hardware fault tolerance techniques and describes the
implementation of some of these techniques on the Fault-Tolerant Parallel Processor

(FTPP). While the methods discussed in Section 2.1 are adequate for tolerating the most

commonly expected faults, ultra-reliable computer systems, like FTPP, need to adopt a
more conservative fault model which includes Byzantine faults. Section 2.2 discusses the

Byzantine Resilience approach used to tolerate these faults and its implementation on

FTPP.

2.1 Hardware Fault Tolerance Concepts

FTPP uses hardware redundancy to tolerate hardware failures and to achieve high

reliability. An overview of some of the basic concepts associated with hardware faulh

tolerance is presented here. This section begins with a discussion of the use of
redundancy to tolerate faults and then elaborates on some hardware redundancy

techniques. Finally, the implementation of these techniques on FTPP is described.

2.1.1 Redundancy

All forms of fault tolerance rely on some type of redundancy. This redundancy can

take one of several forms [Joh89]:
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- Hardware Redundancy

Extra hardware is used to provide fault detection, masking, or diagnosis. This
is the most common type of fault tolerance technique.

Software Redundancy

Additional software, beyond that which is needed for normal use, is provided to
detect and possibly tolerate faults. Typically, each copy of the software is
designed and implemented by members of independent teams.

- Information Redundancy

Extra bits are appended to instructions or data to detect and possibly correct
errors. Error detecting and correcting codes (such as Hamming codes) are
examples of the use of information redundancy.

- Time Redundancy

Operations are repeated to allow recovery from transient or intermittent faults.
Time redundancy trades poorer performance for a reduction in the amount of
extra hardware. In many applications, time is less important than hardware due
to size or weight constraints.

The addition of redundancy to a system is costly. For hardware redundancy, the

additional expense is the increased size, weight, and cost of redundant components.

Redundant software takes longer to develop and requires more memory. Coding

techniques require extra hardware and/or software to generate and interpret redundant

data information, and as mentioned above, time redundancy techniques are costly in

terms of performance.

2.1.2 Hardware Redundancy

Despite the cost of using redundancy, the high reliability requirements of many

applications necessitate its use. The most common type of redundancy used in fault-

tolerant systems is the physical replication of hardware. Because digital hardware has

become smaller, faster, and less expensive in recent years, the costs of implementing

hardware redundancy have decreased.

There are three general types of hardware redundancy [Joh89]: passive, active, and

hybrid. Passive techniques use masking to hide the occurrence of faults. Active

techniques detect the presence of a fault and then perform some action to remove it. The

hybrid approach combines features of the passive and active methods. Each of these

three techniques is examined more closely in the following paragraphs.
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2.1.2.1 Passive Redundancy

Passive hardware redundancy masks the presence of faults by using a majority voting

mechanism. Explicit location of a faulty module is not necessary to achieve fault

tolerance because the erroneous data is masked, regardless of location.

The most common type of passive redundancy is called Triple Modular Redundancy

(TMR). In TMR, the hardware module is triplicated, and the three outputs of each

module are given to a voter to determine the correct value. If one of the modules is

faulty, the other two modules will mask the fault, and the voter will provide the correct

output. The structure of a TMR system is given in Figure 2-1.

module 1

input iIotu
module 2 voter

module 3

Figure 2-1. Passive Redundancy Using Triple Modular Redundancy (TMR)

The overhead for TMR is 200%, not including the voter, which can be very complex.

The voter is the weak link in the TMR scheme; if the voter fails, the system fails. Great

effort must be taken to ensure the high reliability of the voter. However, despite its high

cost, TMR is very general and can be applied at any level of a parallel system.

2.1.2.2 Active Redundancy

Unlike passive redundancy which immediately masks a fault, active hardware

redundancy techniques must first detect and locate a fault before correcting it.

Therefore, strictly active methods are most commonly used in applications that can allow

temporarily erroneous results, as long as reconfiguration occurs within a reasonable

amount of time. The two most popular implementations of active redundancy arc

duplication with comparison and standby sparing.
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Duplication with Comparison

In duplication with comparison (Figure 2-2), two identical copies of a module operate

on the same data and supply their results to a comparator to check for equality. If the

comparator detects a disagreement, it generates an error signal. Upon receipt of the error

signal, the decision unit causes both modules to perform self-tests to determine the faulty

module. Based on the results of the self-tests, the decision unit determines which

module's output to use as the system output, and the faulty module can later be replaced

or switched-out of the system.

-- 40 module 1 i

input error signal decision output
comparator unitroiga

Lo.module 2

Figure 2-2. Active Redundancy Using Duplication with Comparison

This technique requires 100% overhead, not counting the comparator. The circuitry

of the comparator is much less complex than that of the voter used in TMR, so the

comparator is less expensive and typically more reliable. However, a comparator failure

results in system failure, just as a voter failures results in TMR system failure.

Standby Sparing

A second example of active hardware redundancy is standby sparing (Figure 2-3). In

standby sparing, one module (known as the primary) is operational, and anothir module

serves as a standby or spare. The primary module employs some type of error detection

scheme (perhaps self-testing) to determine the valioity of its output. If the output of the

primary is faulty, the spare becomes operational, and the faulty module is switched out of

the system. Some implementations of this technique use more than one spare module,

and therefore tolerate more than one fault.
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error
detection

primary

input switch output
(mux)

spare

Figure 2-3. Active Redundancy Using Standby Sparing

The success of the standby sparing scheme is dependent upon the reliability of the

error detection process used by the primary module.

2.1.2.3 Hybrid Redundancy

The third type of hardware redundancy is known as hybrid redundancy. Hybrid

redundancy combines features of both the passive and active approaches. Fault masking

is used to prevent the system from producing erroneous results, and fault detection and

location information is used to reconfigure the system after a fault has occurred. Of the

three hardware redundancy techniques, the hybrid approach is the most expensive to

implement in terms of hardware.

An example of hybrid redundancy is the TMR with spares scheme, shown in Figure

2-4. The technique provides a core of three modules arranged ii a voting configuration.

Spare modules provide replacements to faulty modules in the TMR core, while the

disagreement detector locates any module whose output does not agree with the majoritv.

The faulty module is then removed from the [MR core, and one of the spare modules is

switched in to replace it.
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S disagreement i

detector

Smodule 1

input moue2vtroutput

H module 3 
oe

4 spare 1 1_ "q

,,,•1 spare m

Figure 2-4. Hybrid Redundancy Using TMR with Spares

If m spare modules are available, the system call tolerate in + I failed modules. For

example, if one spare module is used, the system can tolerate two module failures. III a

purely passive scheme, five modules would be needed to tolerate two failures.

2.1.3 Hardware Fault Tolerance in FTPP

FTPP uses a hybrid redundancy approach to achieve fault tolerance. As will be

described in more detail in Chapter 3, Processing Elements (PEs) can be grouped

virtually as triplexes (three PE modules) or quads (four PE modules). Results from each

replicated PE are exchanged and voted using miessages. InI addition, syndrome

information indicating any discrepancies is attached to the message. The mazjority version

of the message is delivered to each destination. Up to thi~s point, the s,,.,teli hi-,,

performed passive fault tolerance by masking any errors.

Active redundancy is used to identify faulty PEs and to reconfigure the systeni to

avoid their use. This is accomipl ished through the use of Fault Detection, Identification

and Recovery (FDIR) software (ask. FDIR uses syndrome Information to analyze (lie

health of each PE. Upon detection of a fault, several options exist. The faulty PF- mayw he
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given a reset signal in an attempt to recover from a transient fault, or the system may be

reconfigured by replacing the faulty PE with a spare. The application programmer is

responsible for choosing appropriate FDIR options.

2.2 Byzantine Resilience

The hardware redundancy techniques described earlier in this chapter can be used to

tolerate the types of faults that are most likely to occur in a digital system. However,

ultra-reliable computer systems need to adopt a more conservative fault model, one that

does not rely on any a priori assumptions about component behavior. For example, if a

module fails in such a way that it produces conflicting outputs, traditional hardware

redundancy techniques may not be able to reach agreement on the correct output since no

clear majority exists. Byzantine resilience is a fault tolerance technique that guarantees a

system can tolerate this type of malicious fault. Since the concept of Byzantine resilience

is central to the theory, design, and operation of the FTPP [Harp91], it is discussed in

some detail in this section. First, a description of Byzantine faults is given, and then a list
of requirements to tolerate these faults is provided. Finally, an overview of the

implementation of Byzantine resilience on FTPP is given.

2.2.1 Byzantine Faults

As mentioned in the preceding paragraph, a faulty module may fail in such a way as

to display seemingly malicious behavior. This type of fault, known as a Byzantine fault,

could include behavior such as starting and then restarting execution, sending conflicting

information to different destinations, and any other action a failed component may do
which can corrupt the system. The source of this temfinology can be found in I Lam821:

"Reliable computer systems must handle malfunctioning components that
give conflicting information to different parts of the system. This situation
can be expressed abstractly in terms of a group of generals of the
Byzantine army camped with their troops around an enemy city.
Communicating only by messenger, the generals must agree upon a
common battle plan. However, one or more of them may be traitors who
will try to confuse the others. The problem is to find an algorithm to
ensure that the loyal generals will reach agreement."

An example of the Byzantine generals' problem is shown in Figure 2-5. In this figure.

General #1 is loyal and orders the other two generals to attack. However. General #2 is a
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traitor, and he reports to General #3 that he received a "retreat" order. General #3 now

has conflicting information and may not be able to correctly decide the proper course of

action.

General #1

"attack' "..attack"

"he said 'retreat"'

General #3 General #2
"he said 'attack"'

Figure 2-5. Example of the Byzantine Generals' Problem

In this analogy, the generals correspond to Processing Elements, thle traitors to fault%,

PEs, and the messages to inter-processor communication links.

2.2.2 Requirements for Byzantine Resilience

It is obvious that a system designed to tolerate Byzantine faults is more complex than

one that is designed to handle more traditional faults. Simple redundancy techniques are
no longer sufficient when Byzantine faults are included in the fault model. To enlsure a

protocol can tolerate f arbitrarily-failed members, four prerequisites inust be satisfied.

These requirements are summarized below:

1. There must be at least 3f+ I participants in the protocol IPea80.

2. Each participant must be connected to each other participant through at least
2f + I disjoint communication paths [Dol821.

3. The protocol must consist of a minimum off + I rounds of communication
among the participants. [Fis821.

4. The participants must be synchronized to within a known skew of each oilier
IDol84I.

A system that meets these requirements is called f-Byzantine resilient. For example, a

I-Byzantine resilient fault masking group would have four participants, each of which iN
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connected to each other participant by three disjoint communication paths.

Communication among the participants would consist of a synchronous, two-round

exchange.

2.2.3 By7antine Resilience on FTPP

FTPP is designed as a i-Byzantine resilient system; therefore, it satisfies each of the

four prerequisites listed above. This section gives a simplified overview of how FTPP

fulfills each of these requirements.

The first requirement -- at least 4 participants -- is easily satisfied since FTPP allows

PEs to be grouped as simplexes (1 member), triplexes (3 members), and quads (4

members). By choosing virtual groups of processors configured as quads, the

requirement of four members is met.

The second requirement for Byzantine resilience calls for each member of the group

to communicate with each other by at least three disjoint communication paths. FTPP

PEs are contained in one of up to five Fault Containment Regions (FCRs) that are present

in the system. Each of the four members of a quad are physically located in separate

FCRs, and each FCR is connected to each other via an optical link network. Figure 2-5

shows the connections of a four-FCR system. By picturing each member of a quad

residing in a different FCR, it is easy to see that three disjoint communication paths exist

for any PE to communicate to any other PE in the quad.

FCR 1 .44 0- FCR 2

FCR 3 /IFCR 4

Figure 2-6. FCR Interconnections to Achieve Byzantine Resilience

A 1-Byzantine resilient system must have at least two rounds of communication

among its members to satisfy the third prerequisite. FTPP provides a two-round source
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congruency exchange to distribute data. In the first phase of this exchange, the source PE

sends its message to the three other members of its quad. In the second phase, each PE in

the quad sends a copy of the message it received to the other three members. Each PE in

the quad then votes the copies of the message to arrive at a consistent result.

The final requirement for Byzantine resilience calls for the participants to be

synchronized to within a known skew of each other. In FTPP, functional synchronization

occurs twice during each ten-millisecond time interval. Each PE sends a special message

which is distributed, voted and delivered to each member of the quad. The operating

system blocks awaiting return of the synchronization message, thus allowing the slowest
member of the quad to "catch up" with the others and reduce the skew among them.

Chapter 3 discusses in more detail the application of these Byzantine resilience

techniques to FTPP.
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FTPP System Description

The Fault-Tolerant Parallel Processor (FTPP) architecture was developed by Draper
Laboratory to satisfy the dual requirements of ultra-high reliability and high throughput.
For reliability, the FTPP is designed to be resilient to Byzantine faults. For throughput,
the architecture includes multiple processing elements providing parallel processing

capability.
The FTPP arciitecture is described in references [Ab188I, [Bab90], lHar871,

[Har88a], [Har88b], and [Har9l]. It is composed of Processing Elements (PEs) and

specially designed hardware components referred to as Network Elements (NEs). The
multiple Processing Elements provide a parallel processing environment as well as

components for hardware redundancy. The group of Network Elements acts as the
intercomputer communications network and the redundancy management hardware. As
with most computing systems, FTPP can be viewed as a layered system (Figure 3-1).

The top layer consists of the applications programs themselves. In an ideal world,

applications are constructed by the applications engineers without regard for the parallel
and redundant nature of the FTPP system. With this view in mind, FTPP supports a
virtual architecture of Ada tasks which executing in parallel, subject to preemption. and

data and control flow dependencies. In reality, the applications ungineers must assist in

the selection of appropriate task-to-processing site mappings, processing site redundancy
levels, fault recovery strategies, and other parameters available through the FTPP

architecture.
The next lower layer consists of the FTPP System Services; this layer is intended to

mask the complexity of the FTPP's lower layers from the programmer. Certain services

are visible and may be invoked by the applications programmer; these include
input/output, task scheduling, and intertask communication services. Other important
functions of the FTPP System Services are not directly accessible by the applications pro-
grammer and are performed in a manner which is largely transparent. These include the

functions of mapping of tasks to processing sites, routing intertask messages to remote

tasks, disassembling and reassembling long messages, performing input/outpUt fur•Ct ions.
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and fault detection, identification, and recovery (FDIR). The application tasks and FTPP

System Services execute on the FTPP Processing Elements, as indicated in Figure 3-:.

Processing Element

Application

TasksI

System Services
- tasking
- communication
-input/output

* fault detection/recovery

Network 1II /0

Element ] Controllers

Figure 3-1. FTPP Abstract Layered Structure

The next lower layer of FTPP consists of the interprocessor communication network

hardware, known as Network Elements. This hardware implements the interprocessor

message passing functions of FTPP. In addition, it implements throughput-critical, fault-

tolerant functions such as: voting of messages from redundant processing sites- providing

error indications; assisting in synchronizing redundant processing sites; and assisting in

arranging the non-redundant processing resources of FTPP into redundant processing

s'tes based on the needs of the application and the fault state of FTPP.

FTPP Communication Services run on the Processing Elements and interface to the

Network Elements over a standard backplane bus. FTPP Input/Output (10) Services also

run on the Processing Elements and communicate with the Input/Output Controllers over

a standard backplane bus; this may be separate from the bus hosting the Processing

Element-Network Element interface.

This chapter continues the description of FTPP in two sections. Section 3.1 describes

the FTPP hardware, and Section 3.2 presents an overview of the FTPP operating system.
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3.1 FTPP Hardware

The FTPP is composed of Processing Elements (PEs), Input/Output Controllers

(IOCs), Power Conditioners (PCs), backplane/chassis assemblies, and specially designed
hardware components referred to as Network Elements (NEs).

A diagram of the physical FTPP configuration is shown in Figure 3-2. The FTPP
cluster consists of four or five Fault Containment Regions (FCRs). A fault occurring in

one FCR can not cause another FCR to malfunction. Fault containment is achieved by
providing each FCR with independent sources of power, clocking, as well as dielectric
and physical isolation. FCRs may either be distributed for damage tolerance or integrated
if damage tolerance is not an issue. Each FCR contains an NE, between zero and eight
PEs, a PC, and zero or more JOCs. A minimal FTPP system configuration consists of

four NEs and three PEs; a maximal system would consist of five NEs and 40 PEs.
Selection of the number of NEs and PEs for a given application is made according to

performance, reliability, availability, and other engineering requirements. Devices in an
FCR are interconnected using one or more standardized backplane buses.

The NEs provide communication between PEs, maintain synchronization among the
FCRs, maintain data consensus among FCRs, and provide dielectric isolation between the

FCRs via fiber optic links. The NE also implements the protocol requirements for
Byzantine resilience [Lam82]. Each PE consists of a processor, private RAM and ROM,

and miscellaneous support devices, such as a periodic timer. The PEs may optionally
have private 1O devices. The PE may be either a general-purpose processor or a special-
purpose processor for signal or image processing. The prototype FTPP uses Motorola
68030-based processor boards as PEs. The IOCs connect FTPP to the outside world, and

they can be any module that is compatible with the FCR standard backplane bus.
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Fault
Containment

Region

Network
4u Element- NE

High Speed Input/Output Controller

Processing Element

Figure 3-2. FTPP Physical Architecture

To achieve fault tolerance, individual PEs are grouped into Virtual Groups (VGs).

Byzantine-resilient triplexes and quadruplex VGs consist of three and four PEs, respec-

tively, with no more than one PE taken from any FCR. Virtual groups consisting of only

one processing site are called simplexes. Arbitrary mixes of redundancy levels can be

supported. The ensemble of Network Elements provides a virtual bus abstraction

connecting the VGs (Figure 3-3). This abstraction conceals the multiple NEs and their

interconnect, by replacing it with a simple bus-oriented abstraction.
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Network Element Virtual Bus

Quadruplex Simplex Triplex Ouradruplex Triplex Triplex Simplex Simplex Simplex
with 110 with i/0 with i/0

Figure 3-3. FTPP Virtual Configuration

3.1.1 Network Element
The Network Element is the core of an FTPP cluster. The Network Element connects

on one side to a number of processing sites, and on the other side to the other Network
Elements in the cluster. The ensemble of Network Elements forms a virtual bus network

through which the processors communicate. The following paragraphs describe the
functions provided by the Network Element. These functions can be grouped as data

exchange primitives and system maintenance primitives.

3.1.1.1 Data Exchange Primitives
The Network Element provides a number of data exchange primitives The primary

use of these primitives is to transfer data from one virtual processing site to another.
However, some primitives are used to vote common-source data or distribute single-

source data within a virtual processing site. Most of the primitives are solely used by the
FTPP operating system. When the application requests inter-VG communication, the

operating system transparently maps the communication request to the appropriate data

exchange primitive.
Data is transferred from a Processing Element to the associated Network Element

through the processor's output buffers, which contain message packets Each buffer
contains 64 bytes of data, and each buffer has a descriptor which specifies the primitive to

be executed, the destination Virtual Group, and the location of the data in the output data
block. The Network Element is responsible for delivering the buffers to the destination

processor via the processor's input buffers.
The following paragraphs describe the four types of data exchange primitives: class 0.

class 1, class 2, and broadcasts.
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Class 0 Data Exchange Primitive
The class 0 primitive is used when only the side effects of a data primitive are needed;

it does not exchange any data. Examples of some side effects include synchronization.

timestamping, and syndrome reporting. When a Virtual Group executes a class 0
primitive, all of the descriptor information is valid, except for the vote syndrome, which

is undefined. The data in the output data block do not need to be defined. As a result, the
data are not guaranteed to be congruent among members of the destination Virtual Group

and must be ignored.

Class 1 Data Exchange Primitive
The class I primitive performs a single round of exchange and vote on data from a

fault-masking Virtual Group (FMG). FMGs include triplex and quad VGs. Only FMGs
are allowed to execute the class I primitive, since at least three independent copies of
data are required for an unambiguous bitwise majority vote. In a class I data exchange,

the independent copies of data are voted, and the voted result is delivered to each member

of the destination Virtual Group.

Class 2 Data Exchange Primitive
The class 2 primitive performs a two-round, or source congruency, exchange on data

from any Virtual Group. The source of the data may be a simplex VG or a single member

of a triplex or quad. The class 2 primitive is the only mechanism by which simplexes are
allowed to communicate with other VGs. The class 2 data exchange is performed in two
phases. During the first phase, the source VG sends its data to each member of the

destination VG. For the second phase, each member of the destination VG sends a copy,
of the data it received from the source VG in the first phase to the other members of the

destination VG. Then, each member of the destination VG votes the copies of the
message data to arrive at a consistent result.

Broadcasts

Broadcasts are a useful means of transmitting data to all active Virtual Groups in the
cluster. Since broadcasts are more of a drain on system resources than the standard point-

to-point communication primitives, only FMGs are allowed to use them. The broadcast
primitive is invoked as a modifier to the existing exchange primitives. Any of the

primitives, including the data exchange and the system maintenance primitives. can be

delivered as a broadcast. A VG can determine that a received packet was delivered as

part of a broadcast by examining the broadcast modifier bit in the descriptor.
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3.1.2.2 System Maintenance Primitives

In addition to providing primitives for data exchange, the Network Element also

allows for periodic system maintenance through the use of primitives. A special set of
primitives produce side effects that directly affect the state of the Network Element. One

such primitive is a configuration table update, which allows the mapping of physical
processors to Virtual Groups to be changed. Another primitive allows transient recovery

of a failed NE or PE which has been repaired or restarted. Another system maintenance
primitive initially synchronizes the NEs at power-up or after a system reset.

3.2 Operating System Overview

The foundation of the prototype operating system for FTPP consists of the vendor-

supplied Ada Run-Time System and Draper-supplied extensions. FTPP processing is
distributed by task, and intertask communication is provided by message passing. High

reliability is provided by redundantly executing the tasks on replicated processors. The
FTPP harcAare and software have been designed to hide the hardware redundancy,
hardware faults, and the distributed processing details from the applications programmer.

A system configuration specifies the mapping from tasks to VGs and from VGs to
processors. This mapping is maintained by the operating system (in the configuration

table) and is used to isolate the applications programmer from the underlying redundancy

and distributed processing mapping.
The functional structure of the operating system is shown in Figure 3-4. The

operating system consists of two layers: one for services that application tasks access

directly, and a lower layer that does not provide direct service for application tasks.

Services that may be invoked by the applications programmer include task scheduling.
intertask communication, and input/output. This layer is intended to mask the complexity

of FTPP's lower layers from the programmer. Other important functions of the FTPP
System Services are not directly accessible by the applications programmer and are
performed in a manner which is largely transparent. These functions include Fault
Detection, Idertification and Recovery (FDIR) and Time Management. The following
paragraphs describe these five major services provided by the FTPP operating system.
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Figure 3-4. FTPP Operating System Structure

3.2.1 Tasking Services

Within a Virtual Group, multiple tasks require the use of the message passing

resource. To maintain congruent use of this resource across the members of a VG, it is

necessary to ensure there is no competition for its use. This is done by limiting the

preemption allowed in the system and by limiting the use of the message passing

resource. A Rate Group tasking paradigm was developed to fulfill these requiremlents.

The paradigm consists of the Rate Group tasking services (Section 3.2.1), the

communication services (Section 3.2.2), and the time management services (Section

3.2.3).

Within tne Rate Group tasking services, tasks are assigned to execute as either RG I,

RG2, RG3, or RG4 tasks; a Rate Group Dispatcher controls their execution. The tasks in

each Rate Group must be cyclic and execute one complete iteration within their Rate

Group frame. The communication services prevent preemptible tasks from using the

message passing resource directly. Instead, their messages are buffered on queues con-

trolled by the Rate Group Dispatcher. This removes the possibility of contentionl for the
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message passing resource. The time management services establish the Rate Group

frame boundaries.

The Rate Group tasking services are described in the next three sections. An

overvie,v of FTPP scheduling is given in Section 3.2.1.1. The Rate Group Dispatcher is

described in Section 3.2.1.2, and the structure of Rate Group tasks is described in Section

3.2.1.3.

3.2.1.1 FTPP Scheduling Overview

Thr. FTPP supports two different paradigms for scheduling tasks on a single Virtual

Group. The first, known as Rate Group scheduling, is suitable for task suites in which

each task has a well-defined iteration rate and can be validated to have an execution time

which is guaranteed to not exceed its iteration frame. Flight control is an example of such

a task. A modification of Rate Group scheduling discussed below also allows aperiodic

hard real-time events to be processed. The second style of scheduling, known as

aperiodic non-real-time scheduling, is available when the iteration rate of a particular

non-real-time task is unknown or undefined. A mission planning algorithm is an example

of such a task. Validation of the temporal behavior of such tasks may be difficult. In

FTPP, non-real-time aperiodic tasks are not allowed to perturb the critical tinming behav-

ior of hard real-time tasks. In this thesis, only Rate Group scheduling is used and

considered.

In the Rate Group paradigm, tasks executing on each VG in the FTPP are

characterized by an iteration rate. In FTPP, these rates are nominally 100, 50. 25. and

12.5 Hz, corresponding to Rate Group identifiers RG4, RG3, RG2, and RG1.

respectively. A Rate Group frame duration is the inverse of the Rate Group iteration rate:

thus the RG4, RG3, RG2, and RGI frames are 10, 20, 40, and 80 msec in duration.

respectively (Figure 3-5). All frame boundaries are determined by crystal oscillator-

controlled interrul-s. The frequencies and number of Rate Group frames are readily

changed as the application dictates. Frames executing on different VGs in FTPP do not

need to have a particular phase relationship with each other.

33



Chapter 3. FTPP System Description

minor frame index:
•0 :1 2 3 4 :

Ilia-
RG4 RGRG

FRame Frame F~•Rame Frame I FRG3 Frame FRaR3 G Frae 3

Fr~RtR G 2F a e :

1/0, Message-Passinq

Figure 3-5. Architecture of RG Frames on a Single VG

To achieve multi-Rate Group execution on a VG, lower frequency Rate Group tasks

are executed in the "margin" time left from the higher Rate Groups. Since these tasks

have a lower frequency of execution, the higher frequency task scheduler periodically

interrupts the lower frequency tasks to allow for the higher frequency tasks to execute.

The interrupt and task switching process is transparent to the application programmer.
Within a particular Rate Group frame, tasks are scheduled using a nonpreemptive

static schedule. When scheduled, a task executes to self-suspension. The exact time of

execution of a particular task in the Rate Group frame will be in general unknown to the

application programmer, and interactions between RG tasks and other entities occur only

at RG boundaries. Instead, FTPP guarantees that all tasks within a Rate Group will be

executed in the order specified by the application programmer sometime within the

appropriate Rate Group frame. Figure 3-6 gives a programming model of a single Rate

Group frame.
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Figure 3-6. Rate Group Frame - Programming Model

Task overruns are detected by the Rate Group Dispatcher at the beginning of each
frame. Since all tasks within a frame nominally execute to self-suspension, the Rate

Group Dispatcher can detect a frame overrun by checking the suspension status of tasks
which should have completed an iteration in the preceding Rate Group frame. Note that

since the task which caused the overrun may itself have completed in the frame yet
caused a subsequently-scheduled task to overrun, a verification technique must

conclusively identify the task responsible for the overrun. Identification of the culprit is

achieved by comparison of the actual measurement of each task's execution time with its
predicted execution time. Note that this information is already needed for construction of

the task schedule. Several overrun handling options exist and must be selected on a task-

specific basis. Examples include aborting or restarting the culprit, or resuming the
preempted task from its preemption point at the start of its next RG frame.

3.2.1.2 Rate Group Dispatcher

The Rate Group Dispatcher is a special RG4 task responsible for controlling the

execution of the Rate Group tasks and providing reliable communication between Rate
Group tasks throughout the system. It executes as two different parts. Part one (RGDI)
runs at the start of each minor frame and, based upon the minor frame index, determines

the corresponding Rate Group frame boundaries. It checks that the tasks in these Rate

Groups have completed an iteration of their execution cycle. After RGDI schedules the
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10 Dispatcher task for execution, it suspends itself until the 10 Completion interrupt

occurs. Part two of the RG Dispatcher (RGD 2) will then execute.

After the 10 Completion interrupt, part two of the Rate Group Dispatcher records a

congruent value of the current time. It then determines the slowest Rate Group whose

frame boundary corresponds to the start of this minor frame. Because of the mapping of

Rate Group frames to minor frames, all faster Rate Groups will also be at a frame

boundary and the identifier of the slowest Rate Group is used to indicate the entire set of

Rate Groups at a frame boundary.

The sendqueue and updatequeue communication services are then called and

passed the identifier of the slowest Rate Group at the frame boundary. sendqueue

transmits all the messages enqueued by the tasks of the corresponding Rate Groups in

their previous frame. update_queue updates the communication service pointers to

provide a congruent of set of received messages and free buffers to the Rate Group tasks

throughout their frame.
RGD 2 checks the overrun condition of each of the tasks which completed its

execution cycle during the previous minor frame. If a task has overrun, the condition is
logged in the Rate Group Dispatcher log. The log can be examined from the terminal

display. RGD 2 then schedules the tasks in the appropriate Rate Groups for their next

execution cycle.

RGD2 then increments the minor frame index and suspends itself until the start of the

next minor frame, which is when part one will run again. This allows the lower priority

tasks which were previously executing or which were readied for execution by setting the
Rate Group events to begin execution based upon their priority and precedence.

3.2.1.3 Rate Group Tasks

Rate Group tasks must be uniquely associated with a communication identification

number (CID) and a corresponding task configuration table entry. The table entry must

be initialized to specify whether the task is executing on one VG or executing on all VGs.

System service tasks normally execute on all VGs. If a task executes on all VGs then

broadcast messages can be used to send a message to all instantiations of the task.

Otherwise the task instantiation must be identified by specifying the hosting VG

identification number. If a task will execute on only one VG then the task's CID is

sufficient to uniquely identify the task. The task's Rate Group and precedence within the
Rate Group must also be specified; this determines how often the task will execute and

the order in which tasks in the same Rate Group and on the same VG will execute. In

addition, the maximum number and maximum size of messages that each task will qlUeuCe
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for transmission and that may be queued for its reception must be specified; these values

are used to allocate packet buffers for the task's messages.

The task itself must have a well-defined cyclic execution behavior. The task and all

the other tasks specified to execute on the VG must complete their execution cycle within

their Rate Group frame. If they do not, then the Rate Group Dispatcher will detect an

overrun condition for those tasks which did not complete within their frame. As

explained in Section 3.2.1.1, these tasks are not necessarily the ones that caused the

overrun condition to occur. Rate Group tasks use the queue message and

retrievemessage system calls to communicate between tasks.

3.2.2 Communication Services

The communication services are used to communicate among Rate Group tasks. Each

Rate Group task has a communication identification number which can be used as its

logical address. Other tasks in the system can send messages to this address, and the

communication services will map the logical address to the VG executing the task. The

communication is in the form of messages enqueued by the sender for transmission at the

start of the next Rate Group frame and dequeued for reading by the recipient task within

the next Rate Group frame after it is received. Messages are delivered in the order in

which they were sent.

Figure 3-7 gives an overview of the task communication process. The sending task

uses the queue_message procedure to decompose the message into 64-byte data

packets. The Network Element hardware processes the packets and delivers them to the

destination Processing Element. For redundant Virtual Groups (triplexes and quads), the

NE processing consists of voting the redundant copies of each message packet and then

delivering the voted result. The scoop procedure transfers the voted message packets

from the dual-port RAM shared by the NE and PE to the local memory of the PE. The

receiving task can then reconstruct the message by using the retrieve message

procedure.
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Figure 3-7. Overview of Task Communication Process

The following four sections provide a detailed discussion of the task communication

process. The message and corresponding packet structures are described in Section

3.2.2.1. The message buffering process is described in Section 3.2.2.2. The message

transmission procedures are described in Section 3.2.2.3, and the message reception

procedures are described in Section 3.2.2.4.

3.2.2.1 Message and Packet Structure

The Rate Group tasks have a message-based interface to the communication services.

The message itself is a contiguous block of data that is transferred from the sender to the

receiver. Associated with the message are descriptor fields describing the sender,

receiver, type of message, and how the message is to be exchanged. The message and

message descriptor fields are supplied to the communication services by the task sending

the message. The communication services then perform the exchange, and they deliver

the message and descriptor information to the receiving task when it requests delivery of

its messages.

Internally, the communication services store and manipulate the message as a set of

fixed-size packets. A packet is the exchange unit used by the Network Elements, and

each packet consists of a 64-byte block of data and a packet descriptor. The packet

descriptors contain much of the same information found in the message descriptor. In

addition, each packet descriptor has a boolean indicator signifying whether this is the last

packet of the message. The packet descriptors are included with every packet and are

voted along with the packet data by the Network Elements.

In addition to the packet descriptors mentioned above, a packet syndrome and packet

timestamp are also provided by the NE for each delivered packet. These fields are malin-
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tained in the queue of received packets and are used by system services, but they are not

delivered to the receiving task.

3.2.2.2 Message Buffering

A transmit packet queue and a receive packet queue are maintained for each task, and

these queues are located in the Processing Element's local memory. They are the buffers

between the underlying packet-based communication primitives which directly access the

Network Elements and the message-based communication services which are used by the

Rate Group tasks. The transmit queues are used to guarantee that the packets written to

the NEs by the members of a VG have a consistent ordering. The receive queues are used

to guarantee that Rate Group tasks see a consistent set of available messages. Both these

conditions are necessary to guarantee that the members of a VG do not diverge.

Each queue is portioned into a set of active packets followed by a set of free packets.

The active transmit packets contain data waiting to be written to the NE. The active

receive packets contain data waiting to be read by a task. During initialization all the

packets allocated for a task are placed in the free portion of the respective transmit or

receive queue. The queues are maintained as linked lists with pointers to the entry at the

head of the active portion, to the entry at the head of the free portion, and to the entry at

the tail of the free portion. The structure of a Processing Element's transmit and receive

queues is shown in Figure 3-8.

In the transmit queues, entries are moved from the free portion to the active portion
when a message is enqueued by a task. Entries are removed from the active portion and

replaced in the free portion when the stored packets are written to the Network Element.

The transmit queues are maintained as singly-linked lists.
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In the receive queues, entries are moved from the free portion to the active portion

when a packet is read from the Network Element. Entries are removed from the active

portion and replaced in the free portion when a task retrieves a message. Because the

packets of messages mt-y be interleaved, entries may be removed from anywhere withini

the active portion. Therefore, the entries in this portion of the queue are doubly-linked.

3.2.2.3 Message Transmission

Messages are enqueued by Rate Group tasks for transmission at the end of a Rate

Group frame. The message is packetized and enqueued using queue_message and is

transmitted by the Rate Group Dispatcher (Section 3.2.3.2) using send_queue. When

queuemessage is called by a task, the source task is examined to determine where to

queue the message. The message size is then examined to detennine if there are enough

free transmit packet buffers to enqueue the message. If there are, then the message

descriptor and packet descriptors are constructed, and the message packets are written
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into the free packet buffers. If there are insufficient buffers, a failure condition is

returned.

At the end of each frame, the Rate Group Dispatcher (part two) determines the

corresponding Rate Group frame boundaries. The dispatcher calls sendqueue with

the slowest Rate Group at a frame boundary as its parameter. Because of the mapping of

Rate Group frames to minor frames, all faster Rate Groups are also at their frame bound-

ary. sendqueue examines the message queue in each task's local memory and

transmits all the enqueued message packets to the transmit queue located in the dual-port

RAM memory shared by the PE and NE. Any incomplete messages in the queue are

flushed; this indicates a task overrun or other error condition and is logged.

3.2.2.4 Message Reception

Once the Network Element has processed a task's message packets, the packets need

to be transferred from the receive queue (located in the dual-port RAM shared by the NE

and its PEs) to the PE's local memory. This is accomplished through the use of the

scoop procedure. The scooping of message packets occurs twice during each minor
frame, once after the interrupt marking the beginning of a minor frame and once after the

interrupt signifying the end of the 10 interval. The PE performing a scoop simply sends a

message to itself and awaits its reception. The scoop ensures that all members of a

Virtual Group receive an identical set of identically ordered messages before delivery of

its own scoop message [Har87].

Once the scoop has been performed, the pointers used by the receive queue need to be

updated. The updatequeue procedure is called by the Rate Group Dispatcher (part

two) at a Rate Group frame boundary. It updates the set of packets usable by the tasks in

that Rate Group within their next frame. When it is called it sets the receive free queue

frame marker to the receive free queue tail for all the tasks in the Rate Group. Because

the tasks in this Rate Group have completed their execution at the frame boundary, this

provides the same set of free buffers for use when reading packets within the frame.

update-queue then sets the receive active queue frame marker to the receive active

queue tail for all the tasks in the Rate Group.

When the delivered message packets arrive in the PF ; local memory, these individual

packets need to be reassembled into complete messages. This is done through the

retrievemessage procedure. retrievemessage returns the next available

message to the calling task which has been read prior to the last frame marker.

retrieve message unpacketizes and reconstructs the next message at the mcssage

address specified in the ret rieve mes sage call. The message descriptor fields are
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then updated, and the freed buffers are placed at the tail of the receive free queue.

Otherwise, an error condition is returned.

3.2.3 Time Management
The time management service is executed on each Processing Element to maintain

congruent execution between the members of a VG and to provide a consistent system

time for all the VGs. The system time is maintained by the Network Element aggregate

as the elapsed time since system start up. When a packet is received by a Network

Element, the system time is written to the packet's corresponding descriptor field. This

time information is used by the time management service to define absolute time. Each
PE locally maintains a timer to measure the elapsed time since the absolute time was

updated. This timer is used to generate periodic interrupts to define the start of each
minor Rate Group frame and to trigger the update of the absolute time. The interrupt

causes preemption of the currently executing task by the Rate Group Dispatcher. The
execution state of the system must be well-defined at these points to maintain congruent

execution. This is provided by the Rate Group tasking implementation.
A chiming model is used to maintain the local value of system on each processor.

The local timer is used to generate the chime every minor frame period on each member

of a VG. When the chime is generated, the VG members resynchronize and congruently

update the local value of system time with the system time maintained by the Network

Element. The updated time may not agree with the expected time of the chime and this

difference is used to adjust the next chime interval and maintain a constant frame phasing

among the VGs in the system. The local value of system time is only updated at the
chime interrupt.

3.2.4 10 Services

The Input/Output (10) services provide communications between the application

program and external devices (sensors and actuators). 10 services execute on any VG
responsible for 10, and provide distribution of input data and voting of output data. 10

activity is slaved to timer-based interrupts on the VG to reduce jitter, the temporal
variance with which 10 devices are accessed.

The 1O services are logically segmented into two functional modules: the 10 User

Interface and the 1O Communication Manager (Figure 3-9). Applications engineers use

the 1O User Interface to define the required 10 activity during the specifications phase.
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During the execution phase, the 10 Communication Manager controls the processing of

the 1O requests.

10 Services

1 o 0
Applications -1 User Communication • I

Engineer Interface Manager Deis

li specification r -- execution -- "I

Figure 3-9. FTPP 10 Services

The 10 User Interface and 10 Communication Manager are dependent processes, as

shown in Figure 3-10. The Interface interacts with the application tasks to create an 10

request database. Further, the Interface and Communication Manager exchange control

and status information; the output data and control commands are destined for the 10

devices while the input and status data are sent zo the application tasks. Additionally, the

Communication Manager retrieves information from the 10 request and 10 device

databases and interchanges data with the 10 devices.
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Figure 3-10. The 10 User Interface and 10 Communication Manager

The 10 User Interface is detailed in Section 3.2.4.1 while the 10 Communication

Manager is described in Section 3.2.4.2.

3.2.4.1 10 User Interface

The FTPP 10 User Interface allows the applications designer to specify the 10 activity

in a straightforward manner. The 10 Services can either communicate directly or

indirectly with 10 devices (sensors and actuators). Direct communication is achieved by

sending data and command information immediately to the device. Indirect

communication utilizes an 10 controller to access a device. This intervening mechanism

accepts data and control commands from the VG and then manages the 10 operation.

The 10 Services support two general types of 10 activity: sequential and concurrent.

Sequential 10 requires that the VG completely supervise the activity; that is, it must block

itself until the 10 operation has finished. Accordingly, the VG and the 10 devices are

tightly synchronized during the 10 activity. This is necessary to communicate with 10

controllers or devices that have limited processing capabilities such as A/D converters or

"dumb terminals".

Alternatively, concurrent /0 allows the VG to perform other tasks while the 10 is

being processed. The VG downloads data to the controller, sends an "start" command.

and then executes another process. After the 10 has completed, the VG collects the
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resultant input data. The concurrent 10 capability is provided to maximize FTPP's

processing throughput. To permit this parallel IO-VG processing, smart hardware such as

an Ethernet or 1553 controller is necessary.
The applications engineer defines the required 10 activity. This is accomplished by

specifying one or more 10 requests.

3.2.4.2 10 Communication Manager
The FTPP 10 Communication Manager supervises the execution and processing of

the 10 requests. It involves three key components: the 10 Dispatcher, the 10 Source

Congruency Manager task, and the 10 Processing tasks.
The 10 Dispatcher manages the execution of the 10 requests whereas the 10 Source

Congruency Manager and the 10 Processing tasks exchange data among all members of
the Virtual Group (VG), perform the error detection processing and return the data and

status information to the application tasks. The three 10 Communication Manager

processes are discussed in the following paragraphs.

10 Dispatcher

The 10 Dispatcher is a task on the VG that manages the execution of the 10
instructions that cannot be interrupted. For the FTPP, two types of nonpreemptible
instruction sequences exist: (1) the execution and reading of sequential 10: and (2) the

execution of concurrent 10.
Sequential 10 must be carefully controlled by the VG, because the associated destina-

tion 10 devices have limited processing and storage abilities. Furthermore, applications
that utilize sequential 10 often require that data be sent or received quickly and in au-

tonomous batches. If the VG is interrupted, then the 10 operation could be delayed con-

siderably. Thus, the execution of sequential 10 can not be preempted. Additionally.

since these 10 devices have minimal memory capabilities, the input and status data for

each transaction must be read before a subsequent transaction can be executed.

Therefore, the reading of sequential 10 also cannot be interrupted.

In contrast to sequential 10, concurrent 10 is managed by an intelligent 10 Controller

(IOC), permitting the IOC and VG to run in parallel. The VG, however, must initiate the

10 activity by sending a sequence of "start" instructions to the IOC. This sequence can
not be interrupted if the 10 requests are to execute correctly. Accordingly. the 10

Dispatcher must initiate all concurrent 10.
To ensure nonpreemption, the 10 Dispatcher must complete in less than 10 resec,

which is the length of a minor frame. Thus, the application must design and organize its
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nonpreemptible 10 activity such that the 10 Dispatcher does not exceed this constraint.

In addition, the Dispatcher cannot be interrupted by other 10 activity (because it would be

delayed and then possibly preempted); thus, it must have the highest priority of the 10

tasks.

The 10 Dispatcher is scheduled by the Rate Group Dispatcher every minor frame.

Since the type and amount of 10 activity typically varies with each frame, the minor

frame number mu.st be determined every time the task is executed.

Once the frame number is identified, the 10 Dispatcher executes the associated 10

requests. The concurrent 10 is executed before the sequential 10. This allows the VG to

execute and process the sequential 10 while the associated 10 controllers are proces',ng

the concurrent requests. Some 10 requests may be comprised of both sequential and

concurrent 10 chains (referred to as "mixed 10 requests"). They are executed by the 10

Dispatcher after the concurrent 10 requests but before the sequential 10 requests. This

allows the mixed 10 chains to be executed nearly simultaneously while not blocking the

execution of the concurrent 10 requests.

10 Source Congruency Manager

The 10 Source Congruency Manager (IOSC) ensures that each member of a fault-

masking group receives a copy of any input 10 data read by any other member of that

VG. It exchanges this information among each member of that VG via messages sent

through the FTPP communication services. If the Virtual Group performing 10 is a

simplex, then the data does not need to be exchanged (since there is no one to exchange it

with), and the execution time of the IOSC task will be minimal The IOSC executes as an

RG4 task.

10 Processing Tasks

The 1O Processing (lOP) tasks are used by redundant 10 applications. The IOP tasks

have two primary responsibilities: (1) filtering the multiple copies of input data to come

up with a single value, which is returned to the application; and (2) pertbrming error

detection routines and returning error status information to the application.

Data filtering is necessary when multiple input values are not expected to be precisely

equivalent. This can occur when reading the output of an analog device. Sinxe multiple

readings will result in similar (but not necessarily exact) input values, some method for

determining what value to use is needed. Many algorithmn exist (average value, midpoint

value, etc.), and the algorithm implemented is obviously very dependent upon the

application.
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The lOP tasks are also responsible for detecting any errors that may be present in a

redundant 10 Controller. If one of the multiple copies of input data greatly varies from

the others, the IOP tasks will report this information to the Fault Detection, Identification

and Recovery system which will perform any necessary reconfiguration.

There are four 1OP tasks, one for each Rate Group.

Though the IOP task design is complete, the current implementation is only skeletal.

Neither the filtenng algorithm or the error detection code has been implemented.

3.2.5 Fault Detection, Identification and Recovery (FDIR)

The FTPP uses hardware redundancy with fault detection and masking capabilities to

provide fault tolerance. This inherent fault detection capability is supplemented with

traditional self-test methods to increase the coverage of faults.

The fault tolerance provided by the hardware is enhanced by the Fault Detectioi,,

Identification and Recovery (FDIR) functions which are part of the operating system.

While the hardware alone in the FTPP could sustain one fault, the FDIR software allows

it to sustain multiple successive faults by identifying a faulty component and masking it

from system operations. Consequently, the primary purpose of FDIR is to maintain

correct operation in the presence of hardware faults. To achieve this, FDIR has four main

functions:

* testing of FTPP components, i.e., initiating various test procedures in order to
uncover hardware failures.
* identifying a failed component, i.e., detecting a fault, isolating it to a single
component and J:sabling the faulty component.

- performing a remedial operation, i.e., initiating a recovery, operation
commensurate with system requirements.

- performing transient fault analysis, i.e., determining whether the error was due
to a transient fault.

FDIR for the FTPP is composed of two tasks: Local FDIR which executes on each

VG, rid Global FDIR which executes on a specially designated VG. Local FDIR has the

responsibility for detecting and identifying hardware faults in the PEs of its VG and

disabtiug their outputs. Global FDIR is responsible for the collection of status from the

Local FDIR, and it is also responsible for the detection, identification and masking of NE

faults and optical link faults. It resolves conflicting locatk fault identification decisions,

disambiguates unresolved faults, correlates transient faults, and handles VG failures.

When a faulty component has been identified, Global FDIR initiates an appropriate
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recovery strategy which attempts to compensate for the loss of a component. Both of

these FDIR tasks are described in the following paragraphs.

3.2.5.1 Local Fault Detection, Identification and Recovery

After the Network Elements have synchronized with each other the FTPP operates as

a fault tolerant system which provides fault tolerant communication mechanisms to

processing entities referred to as Virtual Groups. Using these communication

mechanisms each Virtual Group will exercise some level of fault detection and

identification capabilities for identification of failures among its processors. Simplex

Virtual Groups may perform only processor self-testing. Fault masking groups (triplex or

quad VGs) can not only perform various levels of testing (unlike simplexes), but can also

unequivocally diagnose a failure in a constituent processor. The fault masking group

maintains correct operation even when one of its members has failed. Furthermore, it

may initiate certain recovery options.

3.2.5.2 Global Fault Detection, Identification and Recovery

The Local FDIR function executing in a Virtual Group monitors itself and performs

some recovery operation which directly affects itself. However, to monitor the FTPP

system globally and also to determine the health of shared components such as the Net-

work Elements, a Global FDIR is necessary. The Global FDIR executes on a single fault

masking group and is responsible for high-level testing of the FTPP, such as a poll of all

Virtual Groups within the system. This is particularly important when a simplex Virtual

Group exhibits faulty behavior. Since a simplex cannot mask itself out of the system con-

figuration via configuration table updates, the Global FDIR assumes this responsibility.

In addition, some recovery options require global information regarding system

resources; this information is unavailable to the Local FDIR functions.

3.2.6 Overview of a Minor Frame

A simplified description of the sequence of events occurring within a minor frame (a

single frame within one Rate Group) of a single VG is depicted in Figure 3-11. The

frame begins with a Frame Tinier interrupt which is generated by a crystal oscillator

resident on each member of the VG. Immediately after the Frame Timer interrupt, the VG

synchronizes its members using a synchronizing act as described in IHlarX7 I. and sets up

the Frame Timer interrupt for the next minor frame.
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Figure 3-1 1. Overview of Minor Frame

The RG Dispatcher runs in two parts. The first part executes immediately after the

Frame Timer interrupt and is responsible for checking for task overruns, scheduling tile
10 Dispatcher, and other minor activities. The second part executes after the 10

Completion interrupt and is responsible for checking for 10 Dispatcher overruns, sending
queued messages to the Network Element, and scheduling RG tasks which are to be
started in the current frame.

The 10 Dispatcher performs all 10 activity as close as possible to the synchronizing

act to minimize 10 jitter. For 10 performance reasons, it is possible for each member of a
VG to perform different 10 transactions and thus not be synchronous after performing

such operations. Therefore an 10 Completion interrupt is scheduled on all VG members
at a user-definable time after the Frame Timer interrupt in order to snap them back into
synchronization. The Frame Timer - 10 Completion interrupt interval may vary for each
frame based on the 10 transactions performed in that frame, and it is determined by the
most lengthy set of transactions the VG's members must perform. This interrupt is alsO

generated by a crystal oscillator on each VG member.
After the 10 Completion interrupt another VG synchronization is performed by the

RG Dispatcher, and messages previously queued for transmission by Rate Group tasks
which completed in the prior frame are transmitted to the Network Element. Messages are

also read from the NE to the VG at this time. The FDIR task is scheduled after message
passing, followed by the 10 Source Congruency (IOSC) and Redundancy .'liilaizer and

10 Processing (lOP) tasks. These 10 tasks are responsible for transmitting single-source
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input data from one member of the VG to the others, 10 error processing, and deriving

and formatting a known good copy of redundant input data for delivery to the destination

application task. The 10 Processing task is also responsible for transmitting

predetermined input data from one VG to another. After the 10 tasks execute, the applica-

tion tasks are scheduled and execute according to the Rate Group scheduling paradigm

until the next Frame Timer interrupt occurs.
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Performance Models

Two aspects of FTPP system performance are of special importance. The first of

these is the operating system overhead. Due to FTPP's real-time constraints, the overhead

associated with the operating system (OS) tasks needs to be accurately predicted to ensure

sufficient time exists for the execution of user application tasks. The second area of

concern is contention for Network Element services by the Processing Elements (PEs).

Since up to eight PEs may be served by one NE, the PEs have to contend with each other

for NE service. This contention results in decreased performance, as well as variable

execution time.

Because of their importance to FTPP system performance, analytical models for both

the operating system overhead and Network Element contention are developed. This

chapter presents descriptions of each model. A high-level description of the OS overhead

model is given in Section 4.1. Because the OS overhead model uses empirical

performance data, which is presented in Chapter 6, a detailed description of the overhead

model is not given until Chapter 7. Section 4.2 describes the Network Element

contention model and presents simulation results.

4.1 Operating System Overhead Model

This section gives a general overview of the model for the overhead associated with

FTPP operating system tasks. Figure 4-1 shows the operating system tasks associated

with each minor frame.
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Figure 4-1. Minor Frame Overview

The overhead required by system resources within each minor frame is the sum of the

execution times for each of the following operating system tasks: interrupt handler (IH),
Rate Group Dispatcher (RGD), 10 Dispatcher (IOD), Fault Detection Identification and

Recovery (FDIR), 10 Source Congruency Manager (IOSC), and 10 Processing (lOP).

This overhead is represented by the following equation:

OH = IH1 + RGD1 + IOD + IH2 + RGD2 + FDIR + IOSC + 10P

A description of each of these eight overheads follows.

4.1.1 Interrupt Handler (IH1) Overhead
The overhead associated with the first interrupt handler (IHI) is given by the

following equation:

IH1 = (time to update clock) + (time to schedule next interrupt) +

(time to scoop messages)

The time needed to update the system clock and to schedule the I/O Completion

Interrupt is constant, and should be relatively small. Both these events are executed in

assembly language routines. The time to scoop messages (Section 3.2.2.4) is a function

of the number of packets that arrived in the processor's receive queue since tie last time a

scoop was executed.
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4.1.2 Rate Group Dispatcher - Part One (RGDj) Overhead
The time needed to execute the first part of the Rate Group Dispatcher (RGD 1) can be

summarized with the following equation:

RGD1 = (time to update congruent time) + (time to check for RGD2 overrun) +
(time to check for task overruns) + (time to set up next RG interval) +

(time to schedule 1OD)

With the exception of checking for task overruns, all the components of RGD1 are
constant. Checking for task overruns is a function of the number of tasks which were
scheduled to suspend themselves during the previous minor frame.

4.1.3 10 Dispatcher (IOD) Overhead
The overhead associated with the 10 Dispatcher task is given below:

IOD = (time to increment frame counter) + (time to start IOR execution) +
(time to wait for 10 to complete) + (time to read input data)

The time to increment the frame counter is constant and is negligible (one 'add'
statement in Ada). The other constant is the time to wait for 1O to complete. This is
simply a wait of a duration chosen by the application programmer to ensure that any

outward-bound 10 is finished before any attempt is made to read incoming 10 data. If 10

is strictly incoming or strictly outgoing, this wait can be minimal. The wait is really only
necessary for 10 that sends out data to some device and then awaits a reply (in the form

of incoming data) from that device.
The two remaining constituents of the IOD overhead are variable and depend on the

type and amount of 10 activity to be performed during a given minor frame. The time to
start the execution of 10 requests depends on the number of 10 requests scheduled to run
this minor frame that have outgoing data, and it also depends on the amount of data each
1O request sends. Finally, the time to read input data depends on the number of 10
requests which have incoming data and on the amount of incoming data.
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4.1.4 Interrupt Handler (IH 2) Overhead

The overhead associated with the second interrupt handler is the same as that given

for the first interrupt handler (Section 4.1.1) and is repeated below:

IH2 = (time to update clock) + (time to schedule next interrupt) +

(time to scoop messages)

Even though both instances of the interrupt handler are modeled by the same

equation, in general the overheads associated with 1H1 and IH2 are different. This is

because the time to scoop messages will vary with the number of packets present in the

receive queue for the processor. Typically, the time interval between the occurrence of

IH 1 and IH2 is less than the time duration from IH2 to the next occurrence of 1H-. This

implies that more packets may arrive in the receive queue during the interval from IH2 to

IH 1, and therefore the message scoop time should generally be longer for IHI than IH2

4.1.5 Rate Group Dispatcher - part two (RGD2) Overhead

The execution time for the second part of the Rate Group Dispatcher (RGD 2 ) can be

quantified as follows:

RGD2 = (time to update congruent time) + (time to check for RGD1 overrun) +

(time to check for IOD overrun) + (time to send queued messages) +

(time to update queues) + (time to schedule RG tasks) +

(time to increment frame count) + (time to set up 10 interval)

Most of the constituents of RGD2 listed above involve simple housekeeping chores

and have constant execution times. The three areas of interest are the time to send queued

messages, the time to update queues, and the time to schedule Rate Group tasks. The

time to send queued messages is a function of the number of tasks that suspended

themselves during the previous minor frame and the number of message packets that each

task had enqueued since the last time its queue was sent. The time to send queued

messages also varies with the amount of contention for NE service. The OS overhead

model assumes no contention; the effect of contention on the send queue time is

explored in Section 4.2. The time to update a task's queue is a function of the number of

packets received and the number of packets read since the last time the LLeCu L,
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updated. The time to schedule the RG tasks is a function of the number of RG tasks that

are to be scheduled this minor frame.

4.1.6 Fault Detection Identification and Recovery (FDIR) Overhead

The overhead of running the Local FDIR task is the same as enqueueing a one-packet

message; this is the entirety of the Local FDIR task.

FDIR = (time to enqueue message to System FDIR task)

The Local FDIR task simply sends a message to the System FDIR task, and the time
needed to enqueue a one-packet message is constant.

4.1.7 10 Source Congruency Manager (IOSC) Overhead

The 10 Source Congruency Manager ensures all members of a redundant virtual
group receive a copy of any input read by another member. The overhead associated with

the IOSC task is given below:

IOSC = (time to exchange input data among VG members)

The time to exchange the input data depends on several factors. The most important

factor is whether or not any input data was read at all. If no data were read in, there is
none to exchange, and the IOSC overhead will be minimal. The IOSC overhead
increases as the amount of incoming data increases. Also important in determining the

execution time of the IOSC task is the number of 10 requests executed during the current
frame that involved incoming tO data.

4.1.8 10 Processing Task (1OP) Overhead
The 10 Processing task is responsible for ensuring that all members of a VG

performing redundant IO agree with one redundant input value. This usually involves
some data smoothing or averaging. For instance, the average of three sensor values could

be used as the single input value. This processing or smoothing of the input data is
specific to the application, and can vary widely as far as execution time is concerned.
The IOP overhead is given below:
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1OP = (time to process input data)

Note that there are four IOP tasks, one for each Rate Group.

4.1.9 OS Overhead Summary

In summary, the total OS overhead for a minor frame is given by:

OH = IH1 + RGD1 + IOD + IH2 + RGD2 + FDIR + IOSC + lOP

Many components of this equation have execution times that are constant. Other

components are variable and depend upon such factors as the system configuration or

amount of message traffic. Looking at the overhead in this manner, the total OS overhead

can be written as a constant value plus some functions of different system parameters.
This equation is given below:

OH = Constant + flnumberof tasks) + g(numberof_/fnessageLpackets)
+ h(amountand type of 10)

The total overhead is a function of the number of tasks and of the distribution of these

tasks among the four Rate Groups. It is also a function of the number of message packets

that each task sends. In addition, the amount of overhead is a function of the type and

quantity of 10 activity.

One aspect of system performance that is not accounted for in the OS overhead model
presented in this section is contention for NE service by PEs. This occurs when more

than one PE is serviced by a particular NE. The OS overhead model was developed using
a simplex processor which did not have to contend for NE service; only one prototype NE
and a limited number of PE boards were available when the overhead model was

developed. In this regard, the OS overhead model provides a lower bound on the amount
of system overhead. The effect of contention on system performance is examined by the

model presented in the following section.
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4.2 Contention Model

The second model developed to analyze FTPP system performance examines the

contention among PEs for NE services. Each processor sends its queued message packets

during the second part of the Rate Group dispatcher. If several PEs are sending packets at

the same time, they must wait for the NE, which services the PEs in round-robin fashion.

This contention results in performance delays because the PEs busy-wait (i.e..

continuously poll the NE to see if it is ready) for each packet to be serviced before

enqueueing the next one. Since performance delays can be critical in real-time systems, it

is important to understand the effects of this contention on system performance by

developing an analytical model.

This section describes the model developed to analyze the delay times associated with

contention. This contention model can be used to determine the busy-wait delay for each

PE as a function of the phasing of the eight PEs. Section 4.2.1 gives an overview of the

contention model, and Section 4.2.2 describes the simulation of the system, based on the

contention model. Finally, the results of the simulation and some concluding comments

are presented in Section 4.2.3.

4.2.1 The Model

The contention model is developed without using traditional queueing theory

concepts. Due to the periodic, real-time characteristics of the operating system, NE

contention can not be modeled using a simple Markovian birth-death queueing model; the

PEs send their message packets once during each Rate Group frame, so the assumption

that packet arrivals are exponentially distributed is not valid for FTPP. Queueing models

with generalized distributions could be used, but the mathematical complexity of these

models quickly becomes excessive. Instead, we have developed a contention model

based on empirical performance data.

The following three sections describe the model used to demonstrate how contention

affects the amount of time needed by a PE to send its message packets to the NE. First.

the PEs' use of the NE to vote and deliver messages is described. Then, an example is

given demonstrating how contention arises when more than one PE is sending packets at

the same time. Finally, a description of the assumptions used to simplify the model is

given.
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4.2.1.1 Processing of Message Packets

Tasks that wish to send messages must first decompose each message into 64-byte

packets and place them in a queue in the PE's local memory. When the Rate Group

Dispatcher (part two) executes during the following minor frame, these message packets

are sent to the NE one at a time during execution of the send_queue procedure. The

queued packets are sent to the PE's transmit queue, which is located in a dual-port RAM

memory shared between the PE and the NE. This is shown in Figure 4-2. Each of the

possible eight PEs connected to a NE has its own transmit queue. The packets are sent

one at a time because the capacity of the queue is only one packet. The PE can not send a

second packet to the transmit queue until the first one has been removed by the NE. If the

PE has more than one packet to send and the transmit queue is full, the PE must wait until

the NE empties the transmit queue before the PE can transfer the next packet to the

transmit queue.

The NE is notified of a packet arrival from the PE in the transmit queue via a System

Exchange Request Pattern (SERP). The SERP is a string of bytes describing the current

state of the transmit and receive queues for each processor in the system. When a packet

arrives in a transmit queue, a status bit is set, and the next SERP will indicate tile arrival

of the packet. The NE is not aware of the presence of the packet until the SERP is

processed. Therefore, there will be a delay from the time when the packet arrives in the

transmit queue until the NE has processed the SERP. If the status bit is set immediately

before the SERP is exchanged, the delay will be minimal and will equal the amount of

time needed to process a SERP (approximately 16 pisec). If the status bit is set just after a

SERP was sent, the delay will be maximal and will equal the time needed to process two

SERPs (approximately 32 gsec).
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Figure 4-2. Message Packet Processing

Once the NE is aware of the arrival of a packet, it can begin to process it. The
processing done by the NE depends on the class of the packet being transmitted (Section

3.1.1,1). A class 0 message requires minimal processing time since no data is involved.

Class F messages (voted messages) are typically the most common type of message.
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Processing a class I packet involves receiving redundant copies of the packet from the

other PEs (connected to different NEs) in the virtual group. These copies are voted,

syndrome information is attached, and the voted copy is delivered to the destinatio,. PE.

A class 2 packet (source congruency message) undergoes a two-round exchange with the

other NEs before voting and delivery.

After processing a packet, the NE delivers the packet by placing it in the appropriate

receive queue, as shown in Figure 4-2. Each PE has its own receive queue located in the

dual-port RAM shared among the NE and its eight PEs. The capacity of each receive

queue is 64 packets. Packets are transferred to the destination PE via a scoop call, and

the packets are reassembled into messages when the destination VG executes a
retrieve_message system call (Section 3.2.2.4).

4.2.1.2 Contention for NE Services Among Two or More PEs
As mentioned earlier, contention during message packet transmission occurs if more

than one PE is sending packets at the same time. The PE must wait for the NF t)' clear its
transmit queue before the next packet can be transferred to the queue. If only one PE is

attached to the NE, there is no delay. If more than one PE is assigned to the NE, the

delay is a function of how many other PEs are sending packets at the same time.

An example demonstrating how the busy-wait time can vary is given in Figure 4-3.
The time needed for a PE to transfer a packet from its local memory to the transmit queue

is constant (approximately 57 l.tsec). As shown in Figure 4-3, the NE will be informed

that PE_0's transmit queue is full once the NE has processed the SERP containing this
information. In the figure, the transmit queue was filled at time ti, and the SERP

processing was completed at time t2. Once the SERP is processed, the NE is able to

process the packet, and the PE is then able to transfer the next packet when the packet

processing is finished and the transmit queue is cleared at time t3. Thus, PE_0 had to
wait from time tl to time t3. Notice that once PE_0 has filled the transmit queue a second

time, it has a much longer delay before it can transfer a third packet. This is because

when the queue is filled at time t4, the NE is busy processing a packet from PE_2 and

thus can not immediately empty PEO's transmit queue. It is not until time t6 that the NE

finishes processing the SERP that indicates PEO's queue is full. Since the NE services

the PEs in round-robin fashion, PE_0 will have its queue emptied at time t7. Figure 4-3
shows that the t4-t7 time interval is greater than the tl-t3 time interval. The amount of

time spent by PE_0 waiting for NE access increased because it had to contend with other

PEs for NE service. Figure 4-3 also indicates the phasing in the system for this example.
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The phasing between two PEs is the difference in time between the start of each of their

minor frames.
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Figure 4-3. Contention Timeline

The result of this increased wait between packets is an increase in the amount of

operating system overhead and a corresponding decrease in the amount of time available

for executing application tasks. The OS overhead increase is a result of the increased

time needed for the Rate Group Dispatcher (part two) to execute, which is a result of the

increased amount of time spent executing the send queue procedure.

4.2.1.3 Simplifying Assumptions

To facilitate the modeling and simulation of this system, some simplifying

assumptions have been made. These assumptions are listed below, and a justification for

each is given.

The time delay for the NE to realize that a transmit queue has been jilled is cmstan.

As mentioned in Sectior 4.2. 1. 1, the NE is made aware of a full transmit qtletiec when it
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processes a SERP. The time delay from when the queue has been filled to when the NE

realizes it, varies as a function of when the queue was filled. If it was filled just before a

SERP is exchanged, the time delay is the time to process one SERP (16 gsec). If it was

filled just after a SERP was exchanged, the time delay is the time to process two SERPs

(32 gsec). Thus, the time delay is always somewhere between 16 .Lsec and 32 gsec To

simplify the simulation, we will assume the time delay is a constant and equals 25 pIsec.

The amount of time needed for the NE to vote and deliver a packet is constant. This

assumption is a combination of the assumption that only class 1 (voted messages) packets

are transmitted and the assumption that the redundant members of the virtual group are

tightly synchronized. Since the vast majority of system message traffic is expected to be
class I messages (possibly over 90%), we will assume that all packets are class I in order

to simplify the model. Then, we will also assume the NE processing time per class 1

packet is constant. The only variance that could exist is due to any time difference in the

arrival of redundant copies of the packets to be voted. Because the processors are only

loosely coupled, individual copies of the packets may arrive at different times. However.

the processors are synchronized just before the Rate Group Dispatcher (part two) is

executed, so the skew among the processors should be minimal and can be ignored.

Therefore, the NE processing time for packets will only consist of the time needed to vote

the packet, attach syndrome information, and deliver the packet. This time is assumed to
be constant and equal to 10 [tsec.

Operating system overheads are identical for each PE for each frame. As will be

shown in Chapter 7, the operating system overhead generally varies with the minor frame
number. For example, minor frame 0 usually has the largest OS overhead since all tasks.

regardless of their rate group, have suspended themselves and are ready to send queued

messages. Minor frame I usually has a minimal overhead since only RG4 tasks can send

their queues. We assume the OS overhead variance is negligible, and that it is identical

for each minor frame for each PE. Therefore, each minor frame on each PE appears like

every other minor frame. Without this assumption, the time within the minor frame when
RGD 2 was executed (and thus when the queued packets can be sent) would vary from
frame to frame and would be a function of the number of tasks, the distribution of tasks

among the four rate groups, the number of packets enqueued by each task per minor

frame, and the amount and type of 10 perfomed by each task per frame.

The phasing among the eight PEs is constant. The phasing between two PEs is the

difference in time between the start of each of their minor frames. In Figure 4-4. an

example of phasing among eight PEs is given. The phasing between PE_0 and PE. 1 is

indicated in the figure. We assume that the phasing from one PE to its neighbor is the
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same. The amount of phasing is important because it determines how much overlap there

is when PEs are performing a sendqueue call. The worst case, in terms of contention,

would be zero phasing; then, all PEs would be sending their queues at the same time, and

contention would be maximized. During simulation, the phasing is varied to note its

effect on contention.

PE 0

I send queue ~ send queue 4send queue

PE6 I Iu .

send queue send queue send queue

Figure 4-4. Phasing Among PEs

There is no contention for the VMEbus which connects the PEs to the NE. One detail

that has been ignored so far is the bus connecting the PEs to their NE. The prototype
FTPP uses VMEbus to connect the PEs and their NE, and it is possible that the PEs may

have to contend for the VMEbus while transferring their packets from local memory to

the transmit queue. We assume that there is no contention among PEs for use of the

VMEbus. Consider the worst case scenario for data traffic over the VMEbus (zero

phasing among the eight PEs). In this case, all eight PEs attempt to send a 64-byte packet

over the VMEbus at the same time. Empirical performance data show it takes

approximately 60 p~sec for a single PE to transfer a packet from local memory to the
transmit queue. Therefore, at worst 512 bytes are being sent over the VMEbes in a 60-

Tsec period, which corresponds to a data rate of 8.5 Mbytes/sec. The VMEus has beetl
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rated at 40 Mbytes/sec, so the worst case amount of VMEbus traffic only uses about 21%

of the available bandwidth. As a result, we consider the assumption of no VMEbus

contention valid.

4.2.2 Contention Simulation
To model the contention for NE services by the PEs, the system description of Section

4.2.1.2 is combined with the simplifying assumptions presented in Section 4.2.1.3 to form

a simplified model used in simulations. An example timeline for the contention model is
given in Figure 4-5. In this example, three PEs each send two packets to the NE for

processing.

Time for PE 0 to Send 2 Pkts

xmit pkt #1 wait xmit pkt #2

PE 0 ____________________

xmitpkt #1 wait xmitpkt #2

I I numpes = 3

phasing numpkts = 2

xmilpkt #1 wait xmit pkt #2
PE 2 177,77 7(, 7, K;l RKROOKOW l'7 . 77-77, 1'

prserp pr serp prserp pr serp pr serp

NE time

pr._pk pr pr pkt pr pk

PEO PE1 PE2 PEO PE1 PE2
pkt #1 pkt #1 pkt #1 pkt #2 pkt #2 pkt #2

Figure 4-5. Contention Model Timeline

During simulation, a number of parameters can be varied to note their effect on the
time it takes a PE to send its message packets. These parameters are listed below:

xfer_pkt This is the time it takes a PE to transfer a packet from its local

memory space to the transmit queue located in the dual-port RAM
shared by the PE and NE. The default value is 60 plsec.

pr-serp This is the time it takes a PE to process a SERP. This Value is
assumed to be constant, and tile default value is 25 pscc.
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pr_pkt This is the time needed by the PE to process a packet. Processing a

packet includes voting redundant copies of the packet and

delivering the voted packet to its destination. The default value is

10 gsec.

num_pkts This is the number of packets each PE sends during each frame.

For simulation purposes, all PEs send the same number of packets.

The default value is 10 packets per PE per frame.

numpes This is the number of PEs connected to the NE. The default value

is 8 PEs (the maximum possible).

phasing The phasing between two different PEs is the difference in time

between the start of each of their minor frames. It is assumed that

the phasing among PEs is constant, as shown in Figure 4-4. The

default value for phasing is 0 g.tsec; this represents worst case

contention.

The simulation software is written in C, and the source listing is given in Appendix B.

It is menu-driven, and the user can change any of the simulation parameters he or she

desires. The simulation provides the length of time needed by each PE to send the

indicated number of packets under the given conditions.

4.2.3 Results of the Simulation

Of the parameters listed in the previous section, some are of more interest to

application engineers than system designers. Application engineers are concerned with

the number of PEs connected to a NE, the number of packets send by each PE, and the

phasing among the PEs; these are the parameters they control. Their goal is to minimize

the time needed for a PE to send its packets within the time constraints of the application

task. The effect of varying the number of packets sent by each PE is shown in Figure 4-6.

By reducing the number of packets per PE the delay in sending the packets is reduced,

and this is shown in the graph. For a given number of packets, different amounts of

phasing can result in slight improvements in performance. However, the performance

improvement is not very significant.
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Figure 4-6. Effect of Varying Number of Packets and Phasing on Time to Send

Message Packets

Another parameter of interest to the applications engineer is the effect of reducing the
number of PEs connected to a NE. Simulation results showing the impact of varying the
number of PEs on the time needed by each PE to send its packets are given in Figure 4-7.
With small amounts of phasing, the number of PEs has some effect on the time needed to

send packets. However, the improvement is not large. Consider the case of no phasing.
With eight PEs, the time delay is 1230 p.sec, but reducing the number of PEs to four only

decreases the time delay to 1100 psec. Reducing the number of PEs by 50% results in an
improvement of only 10.6% in performance. It is also interesting to note that as the

phasing increases, the effect of reducing the number of PEs becomes negligible.

Though not shown in Figure 4-7, the time to send packets for one PE is of interest

because it indicates the extent to which contention can increase system overhead. With

only one PE connected to a Network Element, no contention can occur; the simulation
predicts a 1035 pjsec time delay for one PE to send its queued packets, The worst-case

contention occurs when eight PEs are connected to one NE, and the amount of time
needed for a PE to send 10 packets in this configuration is 1230 lgsec. Therefore,

contention can increase the amount of overhead in sending packets by 18.8% compared

with the case when no contention occurs.
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Figure 4-7. Effect of Varying Number of PEs and Phasing on Time to Send Message

Packets

System designers are also interested in ways to reduce the amount of time spent

sending packets. The parameters controlled by system designers include the time it takes

the NE to process a packet, the time it takes for the NE to process a SERP, and the time
needed by a PE to transfer a packet from its local memory space to the dual-port RAM

shared by it and the NE. Figure 4-8 shows the effect of varying the process packet time
and varying the transfer packet time. For a transfer packet time of 60 gtsec, an 80%

reduction in process packet time (from pr-pkt = 10 jtsec to pr-pkt = 2 gsec) results in a

26.5% performance improvement.
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o 120 ',,0 • •f •• • Pf Pki = 8
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Q. 100 -
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o 800

S 600, a..- "
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Figure 4-8. Effect of Varying Process Packet Time and Transfer Packet Time on Time to

Send Message Packets
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The system designer also determines the time needed by the NE to process a SERP.

Figure 4-9 presents the simulation data for different values of the process SERP time. As

expected, reducing the process SERP time reduces the delay needed by a PE to send its
packets. With a transfer packet time of 60 g.tsec, a reduction in the process SERP time of

80% (from pr-serp = 25 ptsec to pr-serp = 5 ý.tsec) results in a performance improvement

of 24.5%. This is approximately the same effect as varying the process packet time from
10 g.sec to 2 Jisec.

1300

-0- Pr Serp = 25

o 1200 Pr Serp -20

S 110 " Pr Serp=15
V 1100 1'

N. -GP.1

C - 4 ~ P, Serp 50

*• 800 -
7O ' 4; " ' " " ' "ro "oo
800

0 10 20 30 40 50 70

"Time to Transfer Packet (usec)

Figure 4-9. Effect of Varying Process SERP Time and Transfer Packet Time on Time to

Send Message Packets

The goal of both the applications engineer and the system designer is to reduce the

amount of time needed for a PE to send its message packets, even when contending with

other PEs for NE service. To find out which parameter has the greatest single impact,
each parameter was decreased by 50% of its default value. The results are given in

Figure 4-10. This graph shows that the largest improvement in performance for a given

number of packets is obtained by reducing the transfer packet time by 50%. This implies

that if effort can only be spent reducing one parameter, it should be spent reducing the

transfer packet time. The transfer packet time can be reduced by using direct memory

access or by using a faster bus.
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Figure 4-10. Effect of Reducing Each Default Parameter by 50% on Time to Send

Message Packets

The simulation results presented in this section show that application engineers should

minimize the amount of message passing in the system to minimize the effects of

contention on the time needed by a PE to send queued message packets. System

designers should reduce the time needed by a PE to transfer a message packet from its

local memory space to the dual-port RAM shared by the PE and the NE. This could be

accomplished by using direct memory access to accomplish the transfer.
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Performance Measurement Methodology

There are numerous advantages associated with collecting measurements of system

performance. First, empirical measurements can be developed into analytical models
which can be used to predict system performance under various configurations and
workloads. Second, the empirical performance data can be used to measure the system
overhead, a parameter critical for real-time applications. Finally, when the performance
measurements are collected concurrently with prototype operating system (OS)

development, potential performance bottlenecks can be removed at an early and cost-

effective stage of development.
Raw performance data is collected through the use of software probes. The probes

are a software routine which records relevant system information, including the value of

the system clock. These probes are placed around or directly inside the code of the
operating system procedures of interest. During execution, the probes are activated along
with the OS procedure of interest. The probes record execution times and other
parameters of interest in the processor's local memory. The real-time FTPP system is not
suited to perform the analysis of this raw data, so the data are transferred to a host VAX
computer for reduction and analysis. The FTPP 10 System Services are used to move the
data, via an Ethernet link, from the PE to the host. Figure 5-1 shows the path the

performance data take from initial storage in the debug log to final analysis on the VAX.
This chapter describes the methodology used to collect and analyze performance data

for the FTPP. Section 5.1 describes the software probes used to collect performance data.
Section 5.2 outlines the transfer of data from the FTPP to the host VAX (where it is
analyzed). Section 5.3 summarizes the statistical analysis of the data performed on the

VAX.
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Figure 5-1. Performance Measurement Overview

5.1 Software Probes

Software probes are the basic data collection tool. A similar approach to recording

performance information was taken by researchers at Carnegie Mellon University who
used software "sensors" in their Parallel Programming and Instrumentation Environment
[Leh89]. A description of software probe use with FTPP performance measurement is

given by describing the data that is collected and then providing an example of how this

data can be used to determine the time it takes the operating system to enqueue a

message.

5.1.1 Description of Data Recorded by Software Probes

Software probes are the mechanisms used to collect performance data. A software
probe is an Ada procedure which uses an assembly language routine to store information
in an area of the processing element's memory known as the debug log. Each entry in the

debug log contains three fields of information:

- label field

- parameter field

- timestamp field
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The label field records a tag to the probe in the source code. Since numerous

software probes are to be imbedded in FTPP procedures and tasks, it is necessary to

identify the saved data with the probe which stored it. The tag in the label field uniquely

identifies which probe recorded the data for that debug log entry.

The parameter field is used to store a value of pertinent system information. The

choice of what data to store in this field depends on what aspect of system performance

the probe is measuring. For example, the overhead associated with the delivery of

queued message packets by the Network Element (via the sendqueue procedure)

depends on the number of packets queued. Since this is an independent variable, it is

useful to record the value in the parameter field of the debug log entry. Likewise, some

system overheads are a function of the minor frame number. Probes used to measure

those overheads store the current frame number in the parameter field.
The final data field in each debug log entry is the timestamp field. The value of the

system clock is automatically stored in this field each time the software probe is
activated. The system clock value is a 32-bit quantity and has a resolution of 1.28 Psec

per tick. The clock wraps around to 0 after reaching its maximum value (this occurs after

approximately 92 minutes).

5.1.2 Example of Software Probe Use

As an example of how the debug log entry fields are used to measure system

performance, consider a method to determine the length of time for the operating system

to queue a message for delivery. Software probes are inserted in an application task just

prior to, and immediately after, calling the queueing procedure. This is illustrated in

Figure 5-2.

while size < maxsize loop
debug log(16# 1111#, size);
queuemessage();
debuglog(16#1112#, size);

end loop;

Figure 5-2. Placement of Software Probes
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The software probe is activated by the call to the Ada procedure debug_log. Two

parameters are passed during the call to debug log. The first parameter is a number

that will be stored in the label field of the debug log entry. For the first software probe

shown in Figure 5-2, the hexadecimal number 1111 is used as the label (or tag). The

label field for the second software probe (just after the queue-message procedure)

contains 1112 hex.

The second data passed to the debug_log procedure is a variable whose value will

be stored in the parameter field of the debug log entry. When collecting performance

data on the time to queue a message, it is important to know the size of the message being

enqueued. This information can be stored in the debug log entry's parameter field by

including the variable "size" in the call to debug log.

In addition, the value of the system clock at the time debuglog is executed in

stored in the timestamp field of the debug log entry. Two consecutive debug log entries

for enqueueing a 64-byte message would be similar to those given in Table 5- 1.

label parameter timestamp

(size) I

1111 64 1645338

1112 64 1645449

Table 5-1. Representative Use of Debug Log Data Fields

The data contained in these debug log entries is used to determine how long it took

the system to queue the message. Although the processing of the debug log data is

discussed more thoroughly in Section 5.3, a brief overview of the process follows in order

to explain the use of the data fields. First, the timestamp for the probe labeled 1111 is

subtracted by the timestamp for the probe labeled 1112. This number is then multiplied

by the resolution of the clock (1.28 microseconds per clock tick) to give the time needed

to queue the message. In addition, the overhead of making the call to debug_1 3o is also

subtracted out. The result of these operations is the time it took to encIueue the message.
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5.2 Transfer of Data from the FTPP to the Host VAX

The software probes store debug log entries in the local memory of the FTPP
processing element. However, the programs written to analyze this data rin on a VAX

computer, so the data must be transferred from the FTPP to the host VAX for processing.
The FTPP 10 System Services are used to oversee the data's transfer via Ethernet to the
host VAX. An 10 applicatioi, task consisting of an Ethernet output 10 request was
created to perform the transfer of debug log data from the FTPP to Ethernet. On the
VAX end of the Ethernet connection is a program which continuously polls the Ethernet
port for the arrival of new data. Once the data is read in, it is stored in a VAX file for off-

line statistical analysis.

5.3 Data Analysis

At this point in the performance measurement process, raw performance data has been

collected and transferred to the host VAX. This raw data must be processed to obtain
desired and meaningful results. This processing occurs in two phases. First, the time
interval between two debug log entries (taking into account the clock resolution and the

overhead of making the calls to the debug log procedure) must be determined. This
process is described in Section 5.3.1. Second, the sorting of these time values (for

example, by message size) and the performing of statistical functions (such as
determining the average time, maximum time, minimum time, standard deviation, and
counting the number of samples) is accomplished. Section 5.3.2 describes the statistical

analysis process. The source code for the analysis program is given in Appendix C.

5.3.1 Determination of Time Interval

In determining the time interval between two debug log entries, the analysis program

uses the label field of the debug log entries to identify the data associated with each
software probe. The user supplies the analysis program with the labels for each pair of

appropriate software probes. For instance, in the queue message examplc, the pertinent
labels are 1111 hex and 1112 hex. The analysis program searches through all the debug

log entries stored in the VAX file, and saves entries that have the given lahbels. Thesc

saved entries are then paired, and their timestamp values are subtracted. This value ,_ivee
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the number of clock ticks that occurred between the activation of the pair of software

probes. To convert this number to a time value, it is multiplied by the clock resolution,
which is 1.28 glsec per clock tick. One final bit of processing is needed before

determining the length of the time interval. The overhead of activating the software

probe (the time it takes to make the debug_log procedure call) needs to be subtracted

from the time interval value.

To determine the overhead for software probe activation, a number of debug 1 og

procedure calls were sequentially executed. As shown in Table 5-2, there was a 22 gsec

time delay between the activation of two software probes. This implies that the overhead
that should be subtracted between a pair of consecutive probes is 22 Psec. This is the

overhead value that would be subtracted for th, queue message example because the

probes are in consecutive debug log entries. However, sometimes other debug entries are

locateC in between the two entries that are of interest. For example, suppose we want to

measure the length of time it takes for a task to execute, and within that task is a queue

message call that we also want to measure, The task measurement probes would not be

consecutive entriez in the debug log because the queue message measurement probes

would be located between them. Since there are two nested probes between the task

probes, the overhead associated with the queue message probes also needs to be

subtracted from the time for the task. Therefore, the number of intervening probes must

be counted, so the overhead for all these probes can be taken into account. Hence, 22
Jlsec should be subtracted as additional overhead for each intervening software probe

activation.

# of Avg Time Stand Dev Max Time Min Time # Samples

d bug_log (gsec) (psec) (psec) (psec)

2 22 3 25 17 177

3 43 2 51 43 177

4 66 3 69 61 177

5 87 2 94 87 177

6 110 3 112 106 177

7 131 2 138 130 177

Table 5-2. Overheads Associated with debugl 1 :j Procedure Calls
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5.3.2 Statistical Analysis of Time Data

Once the overhead has been accounted for, the time interval between two debug log

entries is known. These values are saved in an array, and it is easy to determine the

average time, standard deviation, maximum time, minimum time, and number of samples

in the array. These results are displayed on the monitor and stored in a file.

The analysis program can also sort the data according to the contents of the parameter

field of the debug log entries. For the queue message example, the execution times are

sorted according to message size. For each message size, the average time, standard

deviation, etc. are given as well as overall statistics. As before, the results are displayed

on the monitor and stored in a data file for l,:,r analysis.
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Performance Measurement Results

Using the methodology described in Chapter 5, empirical performance data for FTPP

operating system overheads were collected. This chapter summarizes the measurements.

Performance data for each of the operating system tasks are presented in the order in

which they occur during each minor frame (Figure 4-1). Section 6.1 describes the

overhead associated with the interrupt handler. Data for Rate Group Dispatcher

performance are given in Section 6.2 for Part One (RGDI) and in Section 6.4 for Part

Two (RGD 2). Section 6.3 discusses the IO Dispatcher overhead. Performance data for

the Fault Detection, Identification and Recovery (FDIR), 10 Source Congruency Manager

(IOSC), and the 10 Processing (IOP) tasks are summarized in Section 6.5, Section 6.6,

and Section 6.7, respectively. Finally, Section 6.8 presents results of other OS overheads.

including queueing and retrieving message packets.

System Configuration
Before giving performance measurement results, the FTPP configuration ', :ring

the data collection is described. All performance measurements were taken on a

prototype FTPP Ada operating system running on a 20 MHz 68030-based Motorola

MVME147S-1 Processing Element. Caches and compiler optimizations were turned on.

The system used a prototype, hardware-implemented Network Element

Since many aspects of system performance are dependent upon the distribution of

tasks, the task list used for all these measurements, unless stated otherwise, is given

below. The user application task simply sent messages of varying length to itself, which

it later read itself.

RG4 tasks (six) RG3 tasks (one)
fdir (local) io-processingtask-_nri3
systemfdir
iosource-congruency-mgr RG2 tasks (one)
io-processing-task-rg4 io-processing task rg2
io-application-task (user task)
applicationtask (user task) RG I tasks (one)

io-processing task rg 1
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6.1 Interrupt Handler Overhead

The interrupt handler (IH) updates the clock time, sets the next interrupt time, and

scoops all queued messages. The IH code is in assembly, except for the scoop

procedure which is in Ada. The time to scoop messages dominates the IH overhead, and
no measurements have been taken of the assembly code, whose execution time is

negligible. The performance data for the scoop procedure is given in the following

section.

6.1.1 Scoop Message
The scoop procedure transfers message packets from a PE's receive queue in the

Network Element's dual-port RAM to the PE's local memory space where they are
reassembled into complete messages. This is described in Section 3.2.2.4. The time to

scoop messages is dependent on the number of packets to be scooped, as shown in Table

6-1.

num pkts avg time std dev max time min time #samples

(64 bytes) (jpsec) (psec) (ýLsec) (psec)

2 321 3 328 320 18

3 433 1 434 433 18

4 542 3 547 539 18

5 652 1 653 652 17

6 763 3 766 759 17

7 871 3 877 864 17

8 981 3 984 977 17

9 1091 2 1097 1089 17

10 1200 3 1203 1196 17

11 1310 3 1315 1308 17

12 1420 2 1422 141.1 17
Table 6-1. Scoop Message Execution Time as a Function of Number of PacketN
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6.2 Rate Group Dispatcher (Part One) Overhead

The primary functions of the first part of the Rate Group Dispatcher (RGD 1 ) are to
check for task overruns and to schedule the 10 Dispatcher for execution, as described in
Section 3.2.1.2. Overall, the execution time for RGDI varies as a function of the minor
frame number, as shown in Table 6-2. The reason for this variance is that different minor
frames have a different number of Rate Groups that have reached their RG boundaries
(Section 3.2.1.1). When a Rate Group reaches its boundary, all tasks within that Rate
Group should have completed their iterative cycle. RGDI ensures that all tasks that
should have completed actually did, and the number of tasks to check depends on the
number of Rate Groups that have reached RG boundaries.

minor RG avg time std dev max time min time # samples
frame boundaries (gtsec) (p4sec) (jisec) (gsec)

0 4,3,2, 1 168 0 168 168 20

1 4 130 2 137 130 20

2 4,3 143 0 143 143 20
3 4 130 0 130 130 20

4 4,3,2 156 0 156 156 20
5 4 130 0 130 130 20

6 4,3 143 2 150 143 19
7 4 130 0 1301 130 19

Table 6-2. Overall Rate Group Dispatcher (Part One) Execution Time as a Function of

Minor Frame Number

Notice that RGDI executes longest during minor frame 0. This is because all Rate
Group tasks have completed their iterative cycle at the completion of minor frame 7.
Thereforu, RGDI has to check for overruns of tasks in every Rate Group. RGDI has a
minimal execution time during minor frames 1, 3, 5, and 7 because during those frames it

only needs to check RG4 tasks for overruns.
The overall execution time for RGDI can be broken down into three main segmente..

Section 6.2.1 presents performance data for the time needed to record the congCruent tille
value and to check for RGD (part two) overrun. Section 6.2.2 stummnarizes data on the
time to check for Rate Group task overruns, and Section 6.2.3 presents data on the time
needed to set up the next Rate Group interval and schedule the 10 Dispatcher.
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6.2.1 Record Congruent Time Value, Check for RGD 2 Overrun

At the beginning of execution, RGD 1 records the congruent time value and then

verifies that the second part of the Rate Group Dispatcher (RGD 2) did not overrun during

the previous minor frame. The time to accomplish these duties, as seen in Table 6-3, is

constant and thus does not vary with the frame number or task distribution.

avg time std dev max time min time # samples

(ltsec) (plsec) (l4sec) (itsec)

21 0 21 21 158

Table 6-3. RGD 1 Update Congruent Time Value and Check for RGD 2 Overrun

Execution Time

6.2.2 Check for RG Task Overruns

RGD1 determines whether any of the tasks that were to complete their iterative cycle

and suspend themselves during the previous minor frame overran the frame boundary.

The time needed to accomplish this is a function of the number of RG tasks that were

scheduled to suspend themselves during the previous minor frame. This is shown in
Table 6-4. This segment of RGD 1 is the only one that does not have a constant execution

time.

num RG minor avg time std dev max time min time # samples

tasks frames (4tsec) (p.sec) (itsec) (gsec)

6 1,3,5,7 58 0 58 58 79

7 2,6 69 3 71 65 39

8 4 79 3 84 77 20

9 0 90 0 90 90 20

Table 6-4. RGDI Check for Rate Group Task Overruns Execution Time as a Function of

Number of Rate Group Tasks

6.2.3 Set tip Next RG Interval, Schedule 10 Dispatcher

Before fi'iishing execution, RGDI sets up the next Rate Group interval, this entails

determining when the next interrupt should occur. RGDI then schedules the I()
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Dispatcher to execute next. These duties are done every minor frame, and the amount of

time needed to do them is constant for all minor frames. The execution times are

summarized in Table 6-5.

avg time std dev max time min time # samples

(.tsec) (itsec) (4sec) (4sec)

48 3 53 47 158

Table 6-5. RGD 1 Set Up RG Interval and Schedule 10 Dispatcher Execution Time

6.3 10 Dispatcher (IOD) Overhead

10 performance data collection is incomplete because the FTPP 10 System Services

are not completely implemented, and the sections that are implemented have not been

optimized. 1O is application-specific, and as a result it is very difficult to make general

statements about 10 performance. However, to provide an estimate of 10 performance,

some data were collected using restricted 10. In particular, all 10 was outbound-only and

used Ethernet to send out the data.

The 10 Dispatcher (IOD) consists of three main sections. First, it determines which

1O requests should be executed this frame and then starts their execution. Second, it

waits for the 10 requests to finish execution. Finally, after waiting, 1OD reads any

incoming 10 data. Each of these activities is discussed in the following paragraphs.

IOD determines which 10 requests should execute during the current minor frame by

checking the 10 execution table, and it then starts the execution of each of these requests.

For outgoing 1O requests using Ethernet, IOD must first transfer the data to an area of

memory used for Ethernet transfers before starting the 10 request. This transfer is done

on a byte-by-byte basis. The time required to transfer the data varies with the number of
bytes to be transferred. This transfer time was measured and is approximately 5 gsec for

each byte sent out. This implies that IOD would spend 500 psec transferring data for an

10 request consisting of sending out 100 bytes of data.

After starting the execution of all 10 requests, IOD waits while the execution takes

place. The amount of time spent waiting depends on how long it takes to execute the 10

request, which is dependent on the hardware device executing the 10. The wait period is

a constant and should equal the longest amount of time to needed to execute the 10
requests for any minor frame. Since no data on 10 execution time has been c'll.ctd, the

set IOD wait period is currently an arbitrarily large number.
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IOD's last duty is to read all incoming 1O data. No performance data was collected

for this because all 10 was strictly outgoing 10.

6.4 Rate Group Dispatcher (Part Two) Overhead

The primary functions of the second part of the Rate Group Dispatcher (RGD 2) are to

send queued message packets and to schedule Rate Group tasks for execution (see

Section 3.2.3.2). A summary of the overall RGD 2 execution times, sorted by minor

frame number, is given in Table 6-8.

minor RG avg time std dev max time min time #samples

frame boundaries (psec) (psec) (.tsec) (pasec)

0 4,3,2, 1 1454 409 2134 710 20

1 4 1190 406 1817 549 20
2 4,3 1279 402 1905 730 20

3 4 1173 394 1830 629 20

4 4,3,2 1367 388 2036 841 20

5 4 1165 374 1817 636 19

6 4,3 1317 381 1929 736 19

7 4 1197 378 1824 629 19
Table 6-8. Overall Rate Group Dispatcher (Part Two) Execution Time as a Function of

Minor Flame Number

As is evident from the large standard deviations in Table 6-8, RGD2 execution times

do not vary directly with the minor frame number. Unlike RGD 1 , which only varied as a
function of the number of tasks that suspended themselves during the previous minor
frame, the dependencies of RGD 2 are more complicated. In particular, RGD'

performance is related to the number of message packets that were enqueued during the
previous minor frame. Since the number of enqueued packets can differ for a given

application from one iteration to the next, it is not meaningful to examine RGD2

execution times as a function of only the minor frame number.
It is more useful to break RGD 2 into several segments and then examine each

segment separately. The following five sections describe the five major segments ot

RGD 2 : update congruent time value and check for RGDI and IOD overruns (Section
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6.4.1); send queued message packets (Section 6.4.2); update message packet queues
(Section 6.4.3); schedule Rate Group tasks (Section 6.4.4); and increment minor frame
number and set up 10 interval for the next frame (Section 6.4.5).

6.4.1 Update Congruent Time Value, Check for RGD 1 and IOD Overrun

At the beginning of each iteration cycle, RGD2 updates the congruent time value used
by each Rate Group and checks to see if either the Rate Group Dispatcher (part one) task
or the 10 Dispatcher task exceeded its execution time bound. The time to accomplish
these duties is the same during each iteration of RGD2. A summary of the execution time

data is given in Table 6-9.

avg time std dev max time min time # samples
(jisec) (ltsec) (l.tsec) (.tsec)

40 2 46 40 157
Table 6-9. RGD2 Update Congruent Time Values and Check for RGDI and IOD

Overrun

6.4.2 Send Queue

RGD 2 calls the send-queue procedure once for each task that suspended itself
during the previous minor frame. sendqueue transfers enqueued message packets
from each PE's local memory space to the Network Element where they are processed

and delivered. The execution time of each sendqueue call is a function of the nunher
of packets that were queued by that task, as shown in Table 6-10. Therefore, the total
amount of time RGD 2 spends sending queued packets depends on the number of tasks
that suspended themselves during the previous minor frame and on the number of packets

enqueued by each task.

It is important to note that the data in Table 6-10 was collected using only one Virtual
Group. Since only one PE was connected to the NE, no contention for NE service
occurred (Section 4.2). Therefore, these numbers represent best case performance: i"f
there were contention, the sendqueue execution times would increase.
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pkts sent avg time std dev max time min time # samples

_per task (psec) (jisec) (Psec) (lisec)

0 5 3 10 2 1140

1 78 14 231 77 256

2 182 12 209 171 22

3 301 14 322 283 22

4 417 7 440 409 21

5 535 10 552 528 21

6 657 12 684 647 21

7 770 11 797 758 21

8 890 8 909 877 21

9 1007 9 1027 990 21

10 1125 9 1146 1115 21

Table 6-10. RGD 2 Send Queue (Per Task) Execution Time as a Function of Number of

Packets

6.4.3 Update Queue

RGD 2 calls the update_queue procedure once for each task that suspended itself

during the previous minor frame. This procedure updates pointers used in each PE's

receive queue, located in the dual-port RAM. The execution time of each

update_queue procedure call varies as a function of the number of receive-queue

pointers which need to be updated and is equal to the number of packets enqueued during

the previous frame. This is shown in Table 6-11. The total amount of time spent by

RGD 2 updating queues is a function of the number of tasks that suspended themselves

during the previous minor frame and the number of packets enqueued by each task.
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pkts sent avg time std dev max time min time #samples

per task (psec) (Psec) (ptsec) (pec)

0 16 3 24 11 879

1 28 3 31 24 195

2 36 1 37 36 17

3 42 1 43 42 16

4 51 3 56 48 16

5 56 2 61 55 16

6 66 3 69 61 16

7 74 0 74 74 15

8 81 3 87 80 16

9 86 1 87 86 16

10 94 3 100 93 16

Table 6-11. RGD 2 Update Queue (Per Task) Execution Time as a Function of Number

of Packets

The data for send-queue and update_queue are linear, as shown by the

graphical representation of the performance data, which is given in Figure 6- 1.
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Figure 6-1. Graphical Representation of Send Queue and Update Queue Execution Time

as a Function of Number of Packets
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6.4.4 Schedule Rate Group Tasks

RGD 2 schedules Rate Group tasks to run in the time remaining in the current frame.

It does this by calling a scheduling procedure for each Rate Group that reached its RG

boundary during the previous minor frame. Therefore, this scheduling procedure is called

a maximum of four times by RGD 2 (in minor frame 0). It is always called at least once

during a minor frame. The execution time of the scheduler is a function of the number of

tasks that need to be scheduled for a particular Rate Group. Table 6-12 summarizes the

scheduler performance data. To collect more data points for the time needed to schedule

RG tasks, the system configuration described at the beginning of this chapter was altered

by adding more application tasks.

num tasks per avg time std dev max time min time # samples

Rate Group (ltsec) (ltsec) (ltsec) (lisec)

1 55 3 59 52 74

2 85 2 90 84 72

3 121 2 127 121 70

4 143 3 146 140 65

5 134 2 140 134 129

6 160 3 166 158 147

7 190 2 196 190 140

8 221 1 222 216 131

Table 6-12. RGD 2 Schedule Rate Group Tasks Execution Time as a Fun.ctiorn of

Number of Tasks Per Rate Group

6.4.5 Increment Frame Number, Set Up 10 Interval for Next Frame

At the end of each RGD 2 execution cycle, the minor frame number is incremented

and the 1O interval is set up for the next ninor frame. These activities take place just one

time per RGD 2 execution. As seen in Table 6-13, the execution time to perform these

duties is constant and is negligible compared to the total RGD 2 execution time.

avg time std dev max time miin time # samples

(ptsec) (l.tsec) ([tsec) (ltsec)

9 3 16 8 157

Table 6-13. RGD 2 Increment Frame Number and Set 10 Interval Execution Time

86



Chapter 6. Performance Meisurcmcnm RCsuits

6.4.6 RGD2 Summary
The overall RGD 2 execution time has five constituent parts. Two of these are

constant, and they account for 49 ýtsec of RGD 2 overhead. Of the other three

constituents, two (send_queue and update_queue) have execution times which are a

function of the number of enqueued message packets. The final constituent of RGD-2
overhead is the time needed to schedule Rate Group tasks; this is a function of the
number of tasks to schedule.

6.5 Fault Detection, Identification, and Recovery (FDIR) Overhead

The FDIR overhead for all Virtual Groups (VGs) within FTPP is the time to execute
the Local FDIR task, except for the System VG, which executes the System FDIR task in
addition to Local FDIR. Performance data for the System FDIR task are not presented
because the task has not yet been fully implemented. Data for the execution times of the
Local FDIR task are given in Table 6-14. Local FDIR simply enqueues a one-packet
message which is delivered to the System FDIR task. Its execution time is constant, even
with faults present in the system.

avg time std dev max time min time # samples
(g.sec) (ptsec) (gsec) (gsec)

84 2 90 84 210

Table 6-14. Local FDIR Execution Time

6.6 10 Source Congruency Manager (IOSC) Overhead

The 10 Source Congruency Manager ensures that all members of a redundant VG
receive a copy of any input read by another member. The system configuration used to

collect performance data used a simplex VG for 10, so the IOSC execution time reported
in Table 6-15 should be regarded as a "best case" execution time.
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avg time std dev max time min time # samples

(4sec) (Isec) (psec) (Psec)

52 1 59 52 142

Table 6-15. Minimal 10 Source Congruency Manager Execution Time

6.7 10 Processing Task (IOP) Overhead

The 10 Processing task is responsible for ensuring that all members of a redundant

VG end up with a single input value. This involves some data smoothing or averaging.

The performance measurements summarized in Table 6-15 indicate a relatively large

standard deviation. This might be because there are four instantiations of this task, one

for each Rate Group. The IOP code is not fully implemented, and the implementation

will be strongly dependent on the application.

avg time std dev max time min time # samples

(jtsec) (iisec) (Wsec) (gsec)

15 12 34 2 357

Table 6-15. Minimal 10 Processing Task Execution Time

6.8 Other Overheads

There are several system overheads that are not explicitly shown in the minor frame

overview given in Figure 4-1. These include the queue message overhead, the

retrieve message overhead, and the time needed to context switch between tasks.

Performance data for these three overheads are given in the following sections.

6.8.1 Queue Message

The queuemessage procedure call is used by a task when sending a message.

This procedure decomposes the message into packets and then enqueues these packets in

the PE's local memory space for later transfer to the NE. As indicated in Table 6-16. the

amount of time needed to enqueue a message is a function of the length of the message.
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msg size msg size avg time stJ dev I max time ainm time # samples

(bytes) (packets) (jtsec) (ýtsec) (jtsec) (pLsec)

0 1 84 2 90 84 20

t00 2 136 3 140 134 19

200 4 221 1 222 221 19

300 5 272 3 278 271 19

400 7 358 1 359 358 18

500 8 410 2 415 409 18

600 10 497 2 502 496 19

700 12 546 1 552 546 19

1 800 13 634 2 641 633 19

900 15 718 3 722 715 19

1000 16 771 21 778 771 19

Table 6-16. Queue Message Execution Time as a Function of Message Size

6.8.2 Retrieve Message

The retrievemessage procedure is used by tasks to reassemble delivered

packets into complete messages. As with queue message, the time ,c retrieve a

message is dependent upon the size of the message. This is shown in Table 6-17. Notice

that it takes longer to retrieve a message of a given length than to enqueue it. When

packets are delivered by the NE, syndrome information indicating whether any redundant

copies of the packet differed from the majority vote is attached to each packet. While

retrieving a message, some of this syndrome information is processed, and that accounts

for the increased execution time.
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msg size msg size avg time std dev max time min time # samples

(bytes) (packets) (Ilsec) (gsec) (p4sec) (ptsec)

0 1 121 2 127 121 19

100 2 193 3 196 190 19

200 4 312 3 315 308 19

300 5 379 3 385 377 19

400 7 499 3 504 496 19

500 8 567 3 571 565 19

600 10 685 3 690 683 19

700 12 752 2 753 746 19

800 13 871 2 877 871 19

900 15 991 3 996 990 18

1000 16 1058 1 1059 1058 18

Table 6-17. Retrieve Message Execution Time as a Function of Message Size

Figure 6-2 depicts a graphical representation of the data contained in Table 6-16

(Queue Message) and Table 6-17 (Retrieve Message).
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Figure 6-2. Graphical Representation of Queue Message and Retrieve Message

Execution Time as a Function of Number of Packets
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6.8.3 Context Switch Overhead
The amount of time needed to context switch between two tasks was measured, and

the results are summarized in Table 6-18. These measurements were collected by

creating a system configuration where two tasks in the same Rate Group were given

consecutive priorities. This ensured that one task would execute immediately prior to the

second one. Software probes were placed just before the iterative completion point of the

first tasks and just after the iterative completion point of the second task. The context

switch time was determined by subtracting the two timestamp values,.

avgtime std dev max time min time # samples

(tsec) (ptsec) (lisec) (l.sec)

19 2 24 18 26

Table 6-18. Context Switch Execution Time

6.9 Performance Data Summary

The overheads in this chapter were presented according to their occurrence during a

minor frame. However, the system overheads can be grouped according io their purpose.

Using this scheme, four major categories exist: communication overheads, scheduling

overheads, 1O overheads, and fault detection overheads. The tasks/procedures aZSsociated
with each of these four groups are listed below.

Communication Overheads
IH (scoop message)
RGD 2 (send queue and update queue)
Queue Message (called by application task)
Retrieve Message (called by application task)

Scheduling Overheads
RGD1
RGD 2 (excluding send-queue and update_queue)
Context Switching

Jnp~ut/do .Qut
IOD
IOSC
lOP

Fault Detection
FDIR
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For the system configuration used in this chapter, the communication overheads

dominate the total overhead. On average, the application task sends five packets per
minor frame; therefore, an average of six packets are processed per minor frame
(including the one-packet FDIR message). The OS communication overheads per minor
frame include scoop (763 jisec), send_queue (637 i.tsec), and updatee_queue

(162 I.tsec). The total communication overhead is 1562 ktsec. The total OS overhead,

excluding 10, is 2199 ptsec (average RGD1 = 141 gsec, average RGD 2 = 1268 jtsec, local

FDIR = 84 p.sec). Therefore, the three communication procedures account for 71.0% of

the total overhead. Note that the queuemessage and retrievemessage

overheads aren't counted in the communication overhead. This is because they are
system procedures which are called by the application tasks. Therefore, the overhead for
queueing and retrieving messages is included in the task's execution time.

The overheads associated with scheduling aid fault detection are rather low compared

with those associated with communication. Scheduling activities take, on average, 553
g.tsec per minor frame, which is 25.1% of the total OS overhead. The local FDIR task
takes just 84 pgsec per minor frame, or 3.8% of the total. Table 6-19 summarizes the

percentage of overhead (excluding 10) due to communication, scheduling and fault
detection. for an average minor frame. Note that the data in Table 6-19 represent values

averaged over eight minor frames; the overhead can vary widely from minor frame to
minor frame.

Overhead Average % of Total

Category Overhead Overhead
(ýtsec) (excluding 10)

Communication 1562 71.0%

Scheduling 553 25.1 %

Fault Detection 84 3.8 %

Table 6-19. OS Overhead Due to Communication, Scheduling and Fault Detection

(Average Values for a Minor Frame)

The significance of the 10 overhead is highly dependent on the amount and type of 10
performed. The important contribution of this thesis concerning 10 performance
measurement is the development of a methodology which can be used to continuously

evaluate 10 performance as development progresses.

92



Chapter 6. Performance Mcasurement Results

The overall FTPP OS overhead (excluding 10) is 2199 ptsec per minor frame, on

average. Thus, 22% of the 10 msec minor frame is consumed by operating system

overhead. This compares favorably to the Software Implemented Fault Tolerance (SIFT)

computer which requires 64.3% OS overhead [Pa1851. The primary source of SIFT

overhead is due to voting and data consistency functions. In FTPP, the voting and data

consistency functions are considered part of the communication overhead. Therefore, as

with SIFT, voting and data consistency functions can also be considered a primary source

of overhead for FTPP. However, FTPP uses the hardware-based Network Element to

reduce the total overhead.
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Detailed OS Overhead Model

One important use of the performance data presented in the previous chapter is its
incorporation into a model which can estimate the operating system (OS) overhead under
various configurations and workloads. Using the empirical performance data summarized
in Chapter 6, Section 7.1 presents a detailed description of the OS overhead model.
Section 7.2 illustrates the use of the model with a given system configuration and
workload; predicted overheads are compared with measured overheads.

7.1 OS Overhead Model with Empirical Data

This section gives a detailed description of the FTPP operating system overhead
model, based on the empirical performance data presented in Chapter 6. A general

description of this model was given in Section 4.1. As in Section 4.1, the overhead model
will be described according to the occurrence of each OS task in the minor frame (Figure

4-1).

The amount of overhead per minor frame is the sum of the execution times for each
of the following operating system tasks: interrupt handler (IH), Rate Group Dispatcher
(RGD), 10 Dispatcher (IOD), Fault Detection Identification and Recovery (FDIR). 10
Source Congruency Manager (IOSC), and 10 processing (IOP). This overhead is
represented by the following equation:

OH = IH1 + RGD1 + IOD + IH2 + RGD 2 + FDIR + IOSC + loP

A detailed description of each of these eight overheads follows.

7.1.1 Interrupt Handler (IHI) Overhead
The overhead associated with the first interrupt handler (1H1 ) is given bv the

following general equation:
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IH1 = (time to update clock) + (time to schedule next interrupt) +

(time to scoop messages)

Updating the clock and scheduling the next interrupt are executed in assembly
language routines and therefore could not be directly measured using the Ada-based

software probes described in Section 5.1. However, the IH overhead is overwhelmingly
dominated by the time needed to scoop messages, so the time needed to update the clock
and schedule the next interrupt is negligible and will be ignored.

The time to scoop message packets is a function of the number of packets that arrived

in the processor's receive queue since the last time a scoop was executed. The data in
Table 6-1 indicate that the relationship between the scoop time and the number of pack<ets
is linear. As a result, the overhead associated with the interrupt handler can be given as

below:

IH1 = 110 * numberof packets + 103 (psec)

7.1.2 Rate Group Dispatcher- Part One (RGD 1) Overhead

The amount of time needed to execute the first part of the Rate Group Dispatcher

(RGD 1) can b.- summarized with the following general equation:

RGD1 = (time to update congruent time) + (time to check for RGD2 overrun) +

(time to check for task overruns) + (time to set up next RG interval) +

(time to schedule IOD)

With the exception of checking for task overruns, all the components of the Rate

Group Dispatcher (part one) are constant. Table 6.3 and Table 6.5 quantify this total
constant overhead as 69 psec. The time needed to check for task overruns varies with the
number of tasks that completed their iterative cycle during the previous minor frame.

Table 6.4 shows that this overhead is approximately 10 I.sec per task. Therefore, the total

overhead associated with RGD 1 can be described by the following:

RGDI = 10 * number of suspendedtasks + 69 (psec)
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7.1.3 10 Dispatcher (IOD) Overhead

The general overhead associated with the 10 Dispatcher task is given below:

1OD = (time to increment frame counter) + (time to start IOR execution)+

(time to wait for 10 to complete) + (time to read input data)

As explained in Section 6.3, 10 performance measures were limited to outgoing 10

data. This makes it very difficult to explore the constituent IOD overheads in much

detail. The time to increment the frame counter is constant and is negligible (one 'add'

statement in Ada). The other constant is the time to wait for 1O to complete. This is

simply a busy-wait of a duration chosen by the application programmer to ensure that any

outward-bound 10 is finished before any attempt is made to read incoming 10 data.

Though the wait is constant for a given system configuration, it can vary widely

depending on the application and type of 10 performed for the given configuration.

The two remaining constituents of the IOD overhead are variable and depend on the

type and amount of 10 activity to be performed during a given minor frame. The time to

start the execution of 10 Requests depends on the number of 10 requests scheduled to

run this minor frame that have outgoing data, and it also depends on how much data each

10 request is sending out. As stated in Section 6.3, the time needed to start IOR

execution is approximately 5 gtsec per outgoing byte of 10 data. Finally, the time to read

input data obviously depends on the number of 1O requests that have incoming data and

on the amount of data coming in. No performance measurements were taken using

incoming 10 data.

7.1.4 Interrupt Handler (1H2) Overhead

The overhead equation associated with the second interrupt handler (IH2) is the same

as that given for 1H1 (Section 7.1.1 ) and is repeated below:

IH2 = 110 * numberofjpackets + 103 (psec)

Even though both instances of the interrupt handler are modeled by the same

equation, in general the overheads associated with IH1 and 1H2 will be different. This is

because the time to scoop messages will vary with the number of packets present in the

receive queue for the processor. Typically, the time interval between the occurrence of
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IH1 and IH2 is less than the time duration from IH2 to the next occurrence of IHI. This

implies that more packets have had an opportunity to arrive in the receive queue during

the interval from 1112 to IH1, and therefore the time to scoop messages should generally

be longer for IH1I than IH2.

7.1.5 Rate Group Dispatcher - Part Two (RGD 2) Overhead

The execution time for the second part of the Rate Group Dispatcher (RGD 2 ) can be

generally described as follows:

RGD2 = (time to update congruent time) + (time to check for RGDI overrun) +

(time to check for IOD overrun) + (time to send queued messages) +

(time to update queues) + (time to schedule RG tasks) +

(time to increment frame count) + (time to set up 10 interval)

All but three of the RGD 2 constituents listed above have constant execution times.

The time to update the congruent time value, check for RGDI and IOD overrun,

increment frame count, and set up 10 interval is constant and equals 49 pisec. The three

variable constituents of RGD 2 are the time to send queued messages, the time to update

queues, and the time to schedule RG tasks.

The time to send queued messages is a function of the number of tasks that suspended

themselves during the previous minor frame and the number of message packets that each

task had enqueued since the last time its queue was sent. For each task, the time to send

the queued packets (Table 6-10) is given by:

SendQueue (per task) = 115 * number-of packets - 31 (Atsec)

The time to update a task's queue is a function of the number of packets received and

the number of packets read since the last time the queue was updated. Table 6-11 yields

the following equation:

UpdateQueue (per task) = 8 * number-of packets + 19 (Atsec)

Since the time to send queued messages and update the message queues both vary

with the number of packets enqueued, they can be combined into the following single

equation:
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Sendand_UpdateQueue (per task) = 123 * number of packets - 12 (,usec) (1)

The time to schedule the Rate Group (RG) tasks is a function of the number of RG

tasks that are to be scheduled this minor frame. The data in Table 6-12 results in the

following equation:

ScheduleTasks (per Rate Group) = 26 * numberofrg_tasks + 15 (kusec) (2)

The three variable constituents of RGD 2 can be represented by two equations.

Including the constant constituent, the general expression of the RGD2 overhead can now

be expressed as:

RGD2 = (time to send and update queues) + (time to schedule tasks) + (a 'ontstant)

Using equations (1) and (2), the detailed equation for the total RGD 2 overhead is

given by:

numtsk num_rg tsk

RGD2 =E [(123 * numpkti) - 12] +Z 1(26 * num_rgtskj) + 151 + 49 (psec)

_ _i_=1 _ i=1 I

where,
numtsk is the number of tasks with messages to send that completed their

iterative cycle during the previous minor frame.
numpkt is the number of packets a task has enqueued since its last

send queue call.
numrg is the number of Rate Groups that begin a new frame boundary in the

current minor frame.
numrg_tsk is the number of tasks in a given Rate Group.

It is interesting to note that the RGD 2 overhead is much more sensitive to the number

of packets to send than to the number of tasks to schedule. There is approximately five

times as much additional RGD 2 overhead for each additional message packet than that for

each addtional task.
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7.1.6 Fault Detection Identification and Recovery (FDIR) Overhead

The overhead of running the Local FDIR task is the same as that for enqueteCing aI
one-packet message, which is all the Local FDIR task does.

FDIR = (time to enqueue message to System FDIR task)

The Local FDIR task has a constant execution time, as shown in Table 6-14.

Therefore, the overhead for FDIR can be expressed as:

FDIR = 84 (psec)

7.1.7 10 Source Congruency Manager (IOSC) Overhead

The IO Source Congruency Manager (IOSC) ensures all members of a redundant

Virtual Group receive a copy of any input read by another member. The overhead

associated with the IOSC task is given below:

IOSC = (time to exchange input data among VG members)

The data for IOSC were collected using a simplex VG for 10. Therefore, the data

represents a best case value since the 10 data did not need to be exchanged among

members of a redundant VG. The minimal overhead for IOSC is given as:

IOSC = 52 (gvec)

7.1.8 10 Processing Task (lOP) Overhead

The 10 Processing (lOP) task is responsihle for ensuring that all members of a VG

performing redundant 10 end up with a single input value. This usually involves some

data : moothing or averaging. For instance, the average of three sensor values could be
used as the single input value. This processing or smoothing of the input data is specific

to the application, and can vary widely as far as execution time is concerned. The general

lOP overhead is given below:

lOP = (time to process input data)
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The ':)P task is not fully implemented, and the implementation will be strongly

dependent on the application. Therefore, the data for lOP execution time given in Table

6-15 represent minimum execution times for IOP. Using these data, the minimal lOP

overhead is:

lOP = 15 (paec)

7.1.9 Total OS Overhead

The total OS overhead for a given minor frame, excluding 10, is given by:

OH = 1Hl + RGDI + IH2 + RGD2 + FDIR

where,

IHi = 110 * number-of packets + 103

RGD 1 = 10 * number of suspendedtasks + 69

IH2 = 110 * number of-packets + 103

numtsk num-rgsk

RGD 2 =' [(123 * numnpkti) - 121 +1 1(26 * numrgtskj) + 151 + 49
i =1 j=1

FDIR = 84

By combining both IH overheads into one and merging all constants, tile overall OS

overhead (excluding 10 overhead) for a given minor frame becomes:

OH = (110 * numfpkt-scooped) + 10 * nurntsk) +

numtsk numnrg-isk

W 1(123 * nunmpktj) - 12] +Z 1(26 * nurnrgtskj) + 151 + 305 (psec)
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where,
numfpkt scooped is the total number of packets scooped during the minor

frame.
numtsk is the number of tasks with messages to send that completed

their iterative cycle during the previous minor frame.
num_pkt is the number of packets a task has enqueued since its last

send_queue call.
numrg is the number of Rate Groups that begin a newý frame

boundary in the current minor frame.
numrgtsk is the number of tasks in a given Rate Group.

7.2 Example of Overhead Model Use

To illustrate the use of the detailed OS overhead model presented in Section 7. 1, an

example system configuration is created (Section 7.2. 1), the system parameters are uscd

as input to the overhead model in order to predict the OS overheads (Section 7.2.2). and

the predicted overheads are compared with empirically measured overheads (Section

7.2.3). Section 7.2.4 illustrates several other ways to use the OS overhead model.

"7.2.1 Description of Example System Configuration

For our example, the FTPP is configured with three user application tasks. The first

one is an RG4 task that sends and retrieves a 3-packet message during each iteration. The

second application task is an RG3 task that sends and retrieves a 6-packet mcssage during

each iteration. The third application task is an RG 1 task that sends and retrieves a 2-

packet message during each iteration. A listing of all schedulable tasks, sorted by Rale

Group, is given below:

RG4 tasks (six) RG3 tasks (two)
fdir (local) io-processing-task-rg3
system-fdir application-task _2 ( user task)
iosourcecongruency-mgr
io-processing-task-rg4 RG2 tasks (one)
io-application-task (user task) ioprocessing-task_rg2
application-task -1 (user task)

RG I tasks (two)
ioprocessing-task rg I
application task _3 ( user task)
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7.2.2 Predicted Overheads

The OS overheads vary as function of several parameters, as described in Section 7.1.

These parameters include the total number of message packets scooped, the number of

tasks that completed their iterative cycle during the previous minor frame, the number of

packets sent by each task during the previous frame, the number of Rate Groups that

reached a frame boundary during the previous minor frame, and the number of

schedulable tasks for each of the Rate Groups which are at a frame boundary. Based on

the system configuration given above, the values for each of these parameters during each

minor frame are given in Table 7-1.

minor num num num pkts num RG num tasks
frame pkts task per task at frame per RG

number scooped compi boundary

0 12 11 3 (appl1), RG4, 6 (RG4),

6 (appl_2), RG3, 2 (RG3),
2(appl_3), RG2, I (RG2),

I (fdir) RG1 2(RG1)

1 4 6 3 (appl_l), RG4 6 (RG4)

I (fdir)

2 10 8 3 (appl1), RG4, 6 (RG4),

6 (appl_2), RG3 2 (RG3)

1 (fdir)

3 4 6 3 (appli1), RG4 6(RG4)

1 (fdir)

4 10 9 3 (appl 1), RG4, 6 (RG4),

6 (appl_2), RG3, 2 (RG3),

I (fdir) RG2 1 (RG2)

5 4 6 3 (appl 1), RG4 6(RG4)

1 (fdir) _

6 10 8 3 (appl l), RG4, 6 (RG4),

6 (appl 2), RG3 2 (RG3)

1 (fdir)

7 4 6 3 (appl 1), RG4 6(RG4)

1 (fdir)

Table 7-1. System Parameters for Each Minor Frame
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Using the parameter values given in Table 7-1 and the OS overhead equations given
in Section 7.1, the OS overhead for each minor frame can be predicted. These predictions

are presented below:

Frame 0
IHI = (110 * 12) + 103 = 1423 gisec

RGDI = (10 * 11) + 69 = 179 ýtsec

RGD2= [(123 * 3)- 12] + [(123 * 6)- 121 + [(123 -: 2)- 12] + 1(123 * 1) - 121 +

[(26 6) +15] + [(26* 2) + 15] + [(26 * 1) +15] + 1(26 * 2) + 151 + 49

= 1823 ltsec

FDIR = 84 .tsec
TOTAL = 3509 i.tsec (35.1% of minor frame)

Frames 1. 3, 5. and 7
IHI = (110 * 4) + 103 = 543 ptsec

RGDI = (10 * 6) + 69 = 129 itsec
RGD2 = [(123 * 3)- 12] + [(123 * 1)- 12] + [(26 * 6) + 151 + 49 = 688 gtsec

FDIR = 84 ptsec

TOTAL = 1444 j.tsec (14.4% of each minor frame)

Frames 2 and 6
1HI = (110 * 10) + 103 = 1203 gisec

RGDI = (10 * 8) + 69 = 149 Itsec

RGD2 = [(123 * 3)- 12] + [(123 * 6)- 121 + 1(123 * 1) - 121 +
[(26 *6) + 151 + [(26 * 2) + 151 +49 = 1481 tisec

FDIR = 84 tsec

TOTAL = 2917 ltsec (29.2% of each minor frame)

Frame 4
1HI =(110 * 10) + 103 = 1203 ýtsec

RGDI = (10 * 9) + 69 = 159 psec

RGD2 = 1(123 * 3)- 121 + 1(123 * 6)- 121 + 1(123 * 1) - 12) +
[(26 * 6) + 151 + 1(26 * 2) + 15] + 1(26 * 1) + 151 + 49 = 1522 psec

FDIR = 84 .sec

TOTAL = 2995 pisec (30.0% of minor frame)
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Note that 10 overheads are not considered in this example. Also, all the overhead for

scooping messages is assumed to occur in IH1 . This is because the system was
configured using only a single VG. Since all messages are sent from and received by the

same VG, all message packets will be scooped at the beginning of each minor frame,

during IH 1 .

7.2.3 Comparison of Predicted and Actual Overheads
To determine the accuracy of the OS overhead model, empirical performance data

were collected using the system configuration described in Section 7.2. 1. A comparison

of the overheads predicted by the model and the observed overheads is given in Table
7-2. Note that the overheads are the average values for a minor frame; individual

overheads varied from minor frame to minor frame.

over- predicted measured
head time time difference

(sec) (ltsec)

EIH 901 870 + 3.5%

RGDI 144 144 0.0%

RGD 2  1132 1364 - 17.0%

FDIR 84 84 0.0%

TOTAL 2264 2462 - 8.0 %

Table 7-2. Comparison of Predicted and Measured Overheads
(Average Values for a Minor Frame)

Table 7-2 shows that the overhead model is accurate for the IH1, RGD 1 , and FDIR

overheads. However, the predicted RGD 2 overhead is 17.0% less than the observed
overhead. The RGD 2 error caused the total predicted overhead to be 8% less than the

total measured overhead (excluding 10).
There are several causes for the inaccuracy of the RGD 2 model. The primary cause

is the model does not account for the time consumed by send_queue and

updatequeue when a task has no message packets to send. The overhead of making
the sendqueue call for tasks with no message packets is 5 iPsec per task (Table 6-10).

The corresponding overhead for update queue is 16 .Isec per task (Table 6-11).
Therefore. 21 lisec is spent for each task that doesn't have any message packets to send.
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If a 0 is inserted into Equation 1 for the number of packets, the equation results in a
-12 gtsec overhead to sendand-update for each task, instead of the correct 21 jIsec value.

Equation 1 is a least squares line approximation to the data contained in Table 6-10 and

Table 6-11. The approximation is very accurate except for the case when the number of

packets equals zero. The model currently only considers send-andupdate overheads for

tasks that have message packets to send. To be more accurate, it should account for the

overhead for tasks that have no packets.

To see the effect of this on the RGD2 overhead, consider minor frame 1. The model
predicts an RGD 2 overhead of 640 .tsec, versus the observed overhead of 804 gsec

(25.6% error). If the sendandupdate overhead for the four tasks in that minor frame
which had no messages is included, the predicted RGD 2 overhead becomes 724 lisec, and

the RGD2 error is reduced to 10.0%. This reduction in the RGD 2 error can be achieved
by using the following modified sendandupdate queue equation:

Send andUpdateQueue (per task)
= 123 * number offpackets - 12 (psec), if task has message packets in queue

= 21 (psec), if task has no eniqueued message packets

Another cause for the RGD2 overhead error is the inaccuracy of the least square line

used to predict the time to schedule RG tasks (Equation 2). The time predicted by this

equation can be as much as 22% in error. For better accuracy, the time to schedule RG

tasks should be determined by a second- or third-order polynomial, instead of a linear

approximation. Figure 7-1 is a graphical comparison of the measured overhead

associated with scheduling tasks with the least square line approximation of that data.

300-

o • Least Sq Line

- 200 - Time to Schedule

I-
S

100-
C,

0
I.-

0 2 4 6 8 10

Number of RG Tasks

Figure 7-1. Comparison of Time to Schedule Tasks (Measured) with Least Square Line

Approximation
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The RGD 2 overhead is much more susceptible to inaccuracies in the model than the

other overheads because the RGD 2 code contains several nested loops that can cause

small errors to quickly multiply into significant ones. For example, sendqueue and

update queue are called once each for every task that completed its iterative cycle

during the previous minor frame. For the configuration given in this chapter,

send queue and updatequeue are called 11 times each during minor frame 0. Any

error in the predicted overheads for send_queue and update queue will be

multiplied by 11; thus, a small error may quickly become a significant one.

7.2.4 Other Uses of OS Overhead Model

In addition to its use in predicting overhead for a given system configuration, the OS

overhead model can also be used to predict bounds on OS performance. For example, the

model can be used to determine the minimum amount of OS overhead. A minimal

configuration would consist of the following system tasks: Local FDIR (RG4), IOSC
(RG4), lOP (RG4), lOP (RG3), lOP (RG2), IOP (RG 1). One RG1 application task which

did not send any messages would also be present. The OS overhead model predicts the

average total OS overhead per minor frame (excluding 10) for this minimaum

configuration to be 698 ltsec (7% of minor frame).

Another example of using the OS overhead model is to determine the amou, nt of

message traffic which saturates the system, resulting in an OS overhead of 100%. Using

the system configuration of Section 7.2.1, the overhead model predicts that the total OS

overhead will exceed 100% for minor frame 0 when each of the three application tasks

sends 19 message packets apiece during each RG frame.

Similarly, the model can be used to predict the number of tasks which will saturate

the system. Consider the system configuration in Section 7.2.1 with each application task

sending one message packet per RG frame. According to the overhead model, an

additional 59 RG4 tasks (each task sends one message packet per frame) can be added to

the system before the total OS overhead exceeds 100% of a minor frame.
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Conclusions

Fault-tolerant real-time systems demand high reliability and execute tasks within

bounded time constraints. To satisfy these dual requirements, such systems must manage
redundant processing resources and monitor the timing characteristics of tasks. The
overhead associated with these activities uses computing time that could otherwise be

used by application tasks.
The measurement of this overhead is important for several reasons. Empirical

overhead data can be used to develop models which predict the operating system (OS)
overhead under various configurations and workloads. Once the overhead is known, the

amount of time available for executing application tasks is known. Another use of

performance measurement data is to identify potential performance bottlenecks in the
operating system. If measurements are done concurrently with OS development,
potential bottlenecks can be eliminated in a cost effective manner rather than by waiting
until later in development. Another benefit of measuring and modeling the system
overhead is its use in determining where to focus future design resources.

This chapter concludes the Fault-Tolerant Parallel Processor (FTPP) performance

study. Section 8.1 reviews the major contributions of this thesis, and Section 8.2 suggests

areas for further study.

8.1 Major Contributions

The major findings of this thesis can be grouped in three primary categories.

1. Empirical Performance Data

(a) A methodology for collecting performance data was developed (Chapter 5).
(b) For the system configuration described in Chapter 6, the prototype operating

system (OS) overhead was 22% of the 10 msec minor frame.

(c) The overhead associated with task communication dominates the total

operating system overhead (Chapter 6). For the system configIuration
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described in Chapter 6, the scoop, sendqueue, and updatequeue

communication procedures accounted for 66.4% of the OS overhead,

excluding 10. Scheduling contributed 29.8% of the total overhead, and the

local FDIR task constituted 3.8% of the overhead.
(d) The significance of the 10 overhead is highly dependent on the amount and

type of overhead (Chapter 6). The time needed by the 10 Dispatcher (IOD) to

transfer outgoing data to the area of memory used by the Ethernet controller is

excessive. This is because the data is transferred on a byte-by-byte basis, as

opposed to using a more efficient transfer. Though 10 performance

measurement is incomplete, the important contribution of this thesis is the
implementation of the methodology for continuously evaluating performance

as 10 development continues.

2. OS Overhead Model

(a) A model, based on empirical data, was developed to predict the system

overhead under various configurations and workloads (Chapter 7).

(b) For a given system configuration, the predicted overhead (excluding 10) of the

model were compared with the observed overhead (Chapter 7). The predicted

system overhead was 8% less than the observed overhead. The overhead
prediction for part two of the Rate Group Dispatcher (RGD 2) was the primary

source of the error, and suggestions on how to improve its accuracy are given

in Section 7.2.3.

3. Contention Model

(a) A model was developed to determine how contention by Processing Elements

for Network Element service affects the time needed for a PE to send queued

message packets (Chapter 4).

(b) Of all the parameters associated with the contention model, the time spent by a

PE transferring a packet from its local memory space to the dual-port RAM

has the greatest impact on reducing the time to send queued messages

(Chapter 4). This suggests that design efforts should be focused on reducing

the transfer packet time to most effectively reduce the time to send queued

messages. This could be accomplished by using direct memory access (DMA)

to transfer data.
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8.2 Suggested Further Research

The following items are suggested for further research.

1. 1O performance needs to be more fully explored. The data for 10 performance is
incomplete because the FTPP 10 System Services arc not completely
implemented, and the sections that have been implemented are not optimized. By

using triplex or quad 10 Virtual Groups, more complete data for the 10 Source
Congruency Manager (IOSC) and the 10 Processing (IOP) tasks could be

gathered.
2. More detailed data for communication procedures should be collected to pinpoint

areas for improvement. Once the improvements are implemented, new data can
be collected to quantify the amount of improvement in performance.

3. Once more 10 and communication performance data are collected, the OS
overhead model can be improved by developing equations for IOD, IOSC, and
IOP. Also, the equation used to predict the RGD 2 overhead can be modified for

more accuracy.
4. The results of contention model could be empirically verified. This could be done

by using varying the number of PEs connected to a NE and measuring the
send-queue execution times.

5. The contention model could be extended to account for bus contention which may

occur on the receive side of the communication process. The contention model
only examines the contention that can occur during the sending of messages.

6. Currently, only one prototype NE board exists. When other NEs are available,
they could be used to determine how long a NE has to wait for redundant copies
of message packets to arrive for voting. One of the assumptions in Section 4.2.1.3

is that the time needed for the NE to process a packet is constant. This assumes
that the individual copies of a redundant message packet arrive at the NE at the
same time. In reality, the processors of a given VG are slightly skewed from each
other, and the NE may have to wait for the arrival of some packets. With multiple
NEs, this wait could be measured and incorporated into the contention model.

7. Empirical performance data could be used to develop other analytical models. For
example, the execution time of application tasks that use system calls could be
estimated via static source code analysis. Work has been started in this area

[Tre93].
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8. The statistical analysis program could be modified to determine distributions of

performance data in addition to average, maximum, minimum, and standard

deviation values. This would allow the prediction of the probability of the

occurrence of a frame overrun.
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Acronyms

CID Communication Identification Number
A designation assigned to each task; it is used for intertask
communication.

FCR Fault Containment Region
A collection of Processing Elements, Network Element, 10 controllers,
and power conditioners which are electrically and physically isolated from
the rest of the system.

FDIR Faulh Detection, Identification and Recovery
Allows FTPP to sustain multiple successive faults by identifying a faulty
component and reconfiguring the system to compensate for the fault.

FMG Fault-Masking Virtual Group
A logical grouping of three or four processors to enhance the reliability of
critical tasks.

FTPP Fault-Tolerant Parallel Processor
A computer designed for both high reliability and high throughput in a
real-time environment.

IH Interrupt Handler
A software routine that executes whenever a hardware interrupt occurs.

1O Input/Output
The reading in or sending out of data.

IOC 10 Controller
A device that connects FTPP to the outside world.

IOD 10 Dispatcher
A software task which manages the execution of 10 requests.

lOP 10 Processing Task
A software task which filters multiple copies of input 10 data to arrive at
one valid value for use by all members of a virtual group.

IOR 10 Request
A definition of the requested 10 activity.

IOSC 10 Source Congruency Manager
A software task which ensures that each member of a fault-masking virtual
group receives a copy of an input 1O data read by any other member of
that virtual group.

NE Network Element
The hardware device which provides the connectivity among virtual
groups. Its primary function is to exchange and vote message packets
provided by the processing elements.
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OS Operating System
A collection of software tasks which manage a computer's resources,
schedule the execution of other tasks, and coordinate events in the
computer.

PC Power Conditioner
A power source which provides a steady voltage, without any power
surges, etc.

PE Processing Element
A hardware device which provides a general or special purpose processing
site.

RG Rate Group
A set of tasks whose iteration rate is well-defined and whose execution
times do not exceed the iteration frame.

RGD Rate Group Dispatcher
A task which is responsible for controlling the execution of the rate group
tasks and providing reliable communication among the tasks throughout
the system. It executes in two parts.

RGD 1  Rate Group Dispatcher (Part One)
Its primary functions are to check for task overruns and to schedule the 10
Dispatcher for execution.

RGD 2  Rate Group Dispatcher (Part Two)
Its primary functions are to send queued message packets and to schedule
rate group tasks for execution.

SERP System Exchange Request Pattern
A string of bytes describing the current state of the input and output
buffers for each processor in the system. It is used to determine if packets
can be sent from one virtual group to another.

VG Virtual Group
A grouping of one or more processors to form a virtual (possibly
redundant) single processing site. All processors in a virtual group
execute the same instruction stream, and each processor is located in a
separate FCR.

VGID Virtual Group Identification Number
A numerical designation assigned to uniquely identify each virtual group
in the system.
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Contention Model Source Code

The source code used to simulate the contention model is contained in one file, SIM.C.

The file contains the following seven functions:

maino

get-parametersO

initializeo

sendqueueO

do-statsO
print-headerO

print-resultsO

The source code listing for the seven functions in SIM.C follows.

/ ************************ */

SIM.C
I* *1

/* by Bob Clasen */
~/* 16 Mar 1993
/********************

/* updated 18 Mar 93 to account for phasing */
/* updated 23 Mar 93 to allow user to change system parameters
/* updated 1 Apr 93 to allow round-robin and priority servicing
/* updated 5 Apr 93 to calculate average delay */

#include 'stdio.h>
#include <math.h>

/* define constants */
#define ARRAYSIZE 200
#define MAX NUMPEs 8
#define ROUNDROBIN 0
#define PRIORITY 1
#define DONE 0
#define NOTDONE 1
#define PR SUMMARY 0
#define PR FULL i
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/* global variables */
int currenttime:
int phasing;
int nestatus;
int pestart;
float avgdelay;
float avgthruput;
FILE *datafile;

/* global system parameters */
int frame-time = 10000; /* length of frame */
int serp_time = 25; /* time for NE to process SERP */
int process_pkt 1 10; /* time for NE to vote and deliver packet W
int xferpkt - 60; /* time for PE to transfer packet to DPRAM
int service = ROUNDROBIN; /* type of servicing algorithm */
int num pkts = 10; /* number of packets sent by each PE
int num pe = MAX_ NUM PEs; /* number of PEs connected to this NE
int startphase = 0;
int end phase = 1000;
int incrphase = 100;
int printmode = PRSUMMARY;

struct t
int pkt_rdytime;
int wait[ARRAYSIZE];
int pktssent;
int finish_time;
int status;
int delay;
float throughput;

} pe(MAX_NUMPEs];

I * . . . . . . . . . . . . .- -

/* main */
/* -------------- /

main ()

get parameters (;
phasing = startphase;

datafile = fopen("results", "w");
printheader();

while ( phasing <= end-phase)
initialize();

while (ne status == NOT-DONE)
send queue();

do stats(;
printresults();

phasing = phasing + incr phase;

fclose(datafile);
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/ * -.. ... . .- /
/* getparameters */
/* ----------------- /
/* prompt user for system parameters */

getparameters()

int change;

/* display current system parameters */
printf("\nCURRENT SYSTEM PARAMETERS\n");
printf( ---------------------------- \nn");
printf("l. Stop simulation at %d usec\n", frame_time);
printf("2. Time to process serp %d usec\n", serp_time);
printf("3. Time to process pkt %d usec\n", process_pkt):
printf("4. Time to transfer pkt %d usec\n", xferpkt);
printf("5. Servicing algorithm ");
if (service == ROUNDROBIN)

printf("round-robin\n");
else

printf("priority\n");
printf("6. Number of pkts per PE %d\n", numpkts);
printf("7. Print Mode ");
if (printmode == PRSUMMARY)

printf("summary only\n");
else

printf("full print of wait times\n");
printf("8. Number of PEs `d\.,n", num pe);
printf("9. Phasing starts at -.d usec\n", startphase);
printf("10. Phasing ends at 'd usec',n", end phase);
printf("11. Phasing increment %d usec\n", incrphase);

/* prompt user for any changes to system parameters *i
printf("\nEnter the number of the parameter to change ('G' when.
scanf ("%d", &change);
while (change != 0)

switch (change)
case 1:

printf("Enter the time to stop simulation
scanf("%d", &frame-time);
break;

case 2:
printf("Enter the time to process serp ");

scanf("%d", &serp_time);
bre-,,;

case 3:
printf("Enter the time to process pkt ")

scanf("%d", &process-pkt);
break;

case 4:
printf("Enter the time to transfer pkt
scanf("%d", &xferpkt);
break;

case 5:
if (service == ROUNDROBIN) I

service = PRIORITY;
printf("Servicing algorithm is now PRIORITY'n")

else
service = ROUND ROBIN;
printf ("Servicing algorithm is now ROUND-ROBIN,rW")

break;
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case 6:
printf("Enter the number of packets sent by each PE ");
scanf("%d", &numnpkts);
break;

case 7:
if (printmode == PR SUMMARY)

print mode = PRFULL;
printf("Print mode is now FULL PRINTOUT\n");

I
else

printmode = PRSUMMARY;
printf("Print mode is now SUMMARY ONLY\n");

break;
case 8:

printf("Enter the number of PEs ");
scanf("%d", &num pe);
break;

case 9:
printf("Enter the phasing to start with ");
scanf("%d", &startphase);
break;

case 10:
printf("Enter the phasing to end with ');

scanf("%d", &endphase);
break;

case 11:
printf("Enter the amount of phasing increment ')

scanf("%d", &incrphase);
break;

default:
printf("Value entered was invalid\n\n");

printf("Enter the number of the parameter to change ('0' when done) ")
scanf("%d", &change);

return;

/* ------------- /
/* initialize */
/* ------------- /
/* initialize pe_structure */

initialize()

int i;

for (i = 0; i < num pe; i++)
pe[i] .pkt_rdy_tlme = (i * phasing) + xferpkt;
pe[i].pkts_sent = 1;
pe[i].status = NOTDONE;

currenttime = xfer_pkt;
pe_start = -1;
nestatus = NOT-DONE;

return;
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/* send queue */
/* -*/

/* simulation rou:tine */

send queue()

int i;
int curserptime;

curserptime = current time;
currenttime = current-time + serptime;

/* find index of pe to start SERP with */
if (service == ROUNDROBIN) f

pestart = pestart + 1; /* round-robin */
if (pestart == num-pe)

pestart = 0;

else
pestart = 0; /* priority */

/* process the ready packets */
i = pestart;
do {

if ((pe[i].pkt_rdy time <= curserptime) && (pe[i .status == NOTDONE))

current-time = currenttime + process_pkt;

if (pe[il.pktssent == num pkta) {
pe[i].finish Lime = pe[il.pkt_rdy_time;
:,e[i].status = DONE;

else
pe[i].wait(pe[i].pKtssent] = current time - pe[ij.pkt_rdy_tlme;
pe[i] .pkt_rdytime = currenttime + xfer_pkt;
pe[iI.p.ts_sent = pe[i].pktssent + 1;

i = i + 1;
if (i == num pe)

i = 0;
I while (i != pe start);

/* check to see if all packets have been sent
ne status = DONE;
for (i = 0; 1 < numpe; i++)

if (pe[1].status == NOTDONE)
ne_status = NOT-DONE;

return;
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/ * -------------- /
/* do stats */
/* ----------------
/* determines statistics: delay, throughput, and utilization */

do stats()

int i;
float sum;

for (i = 0; i < numype; i++) I
pe[i].delay = pe[i .finish time - (i * phasing);
pe[i].throughput = ((float) num-pkts) / pe[i].delay 1000000;

I

/* calculate average delay */
sum = 0.0;
for (i = 0; i < num pe; i++)

sum sum + peti] .delay;
avgdelay = sum / numpe;

/* calculate average throughput '/
sum = 0.0;
for (i = 0; i < num pe; i++)

sum sum + pe[i] .throughput;
avg thruput = sum / num_pe;

return;

I* ----------------- *
/* print-header */
/* ---------------- *
/* prints header information - current system parameters */

printheader()

/* print header info to file */
fprintf(datafile, "\n -------- \n");
fprintf(datafile, "SYSTEM PARAMETERS\n");
fprintf(datafile "------- \n\n");
fprintf(datafile, "stop simulation at %d usec\n", frame time);
fprintf(datafile, "time to process serp %d usec\n", serp time);
fprintf(datafile, "time to process pkt Id usec\n", processpkt);
fprintf(datafile, "time to transfer pkt %d usec\n", xfer pkt);
if (service == ROUNDROBIN)

fprintf(datafile, "servicing algorithm round robin\n");
else

fprintf(datafile, "servicing algorithm priority\n");
fprintf(datafile, "number of pkts sent by each PE •d'n", num pkts);
fprintf(datafile, "\nnumber of PEs in system ý,d\n", numpe);
fprintf(datafile, "phasing starts at %d usec\n", start phase);
fprintf(datafile, "phasing ends at %d usec\n", endphase);
fprintf(datafile, "phasing increment '.d usec\n", incr phase);

fprintf (datafile, "\n \n \n \n \n --------------------'ji");
fprintf(datafile, "SIMULATION RESULTS\n");
fprintf(datafile, " -------- \n");

return;
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/ --- ------

/* print_results *
/* ----------------- /

/* prints simulation results to file and to screen ~

print_results()

mnt i, j;
mnt mx, inn, nm;
float av, sd;

/* print statistics to file *
fprintf (datafile, "\n \nSTATISTICS for Phasing = =5d usec\n", phasing);
fprintf (datafile, "-------- n")

fprintf(datafile, '\t Delay \t PE Throughput\n");
fprintf(datafile, "\t (usec)\t (pkt/sec) \n");
fprintf (datafile, "\t-------- \t--------------\n)
for (i = 0; i < num pe; i++)

fprintf(datafile, "PE %d\t %d \t %.lf\n", i, pe[i] .delay,pe~il .throughput);

/* print average values to file */
fprintf(datafile, "\nAvg PE Delay %..lf usec ", avg-delay);
fprintf(datafile, "(time to send %d pkts)\n", num-pkts);
fprintf(datafile, "Avg PE Throughput %.1f pkts/sec\n ~n", avq Týhruput),

/* print individual wait times to file *

if (print -mode == PRFULL)
fprintf(datafile, "\n \n \nWAIT TIMES for Phasing = d\n", phasinq);
fprintf (datafile, " ------- n")

for (i = 0; i < num pe; i++)
fprintf(datafile, "1\nPE %d wait times\n", i);
for (j = 1; j < pe(i].pkts_sent; j++)

fprintf(datafile, " %d\n", pe[il .wait[j));

1* print individual wait times to screen ~
if (print mode == PRFULL)
printf("\n \n \nWAIT TIMES for Phasing = Xd\n", phasinq);
printf( --"------ n")

for (i = 0; i < num-pe; i++)

printf("\nPE %d wait times\n", i);
for (j = 1; j < pe[i].pkts sent; j++)
printf (" d\n', pe[i].wait.[jJ);

1* print statistics to screen
printf("\n\n STATISTICS for Phasing = %d usec\n", phasing);
printf( -- -----------\~n)
printf("\t Delay \t PE Throughput\n");
printf("\t (usec)\t (pkt/sec) \n");
printf("\t-------- \t--------------\n)
for (i = 0; i < num_pe; i++)

printf('PE %d\t %d \t %ý.lf\n", i, pe[i] .delay, pe~i] .throughput);

/* print average values to screen */
printf("\nAvg PE Delay 1j..lf usec ", avg delay);
printf(" (time to send %ýd pkts)\n", num~pkts);
printf ("Avgj PE Throughput %-.1f pkts/sec\n \n", avg thruput);

return;
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Statistical Analysis Source Code

The Statistical Analysis source code consists of four files. The names of the files and the
functions contained in each file are listed below.

STATS.C

- mainO

MEAS.H
- system structures and definitions

MEAS.C

- sort-data0

- crunch()

-- standdevO

-- avgO

-- maxO

-- minO

-- print results0

OH INFO.C
- initializeO

- getohinfoO

The source code listings for each of these files is given on the following pages.
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/* STATS.C
/* */

/* by Bob Clasen */
/* */

/* 25 Mar 1993

#include <stdio.h>

/* link with meas and oh info */

/* global variables */
int stlabel, endlabel;
int mode;
int info min, infomax, info incr;
char info str[12];
char fname[12];
char ohname[15];

FILE *dataf.ie;

main()

int num-entries;

/* set up default statistical parameters */
initialize();

/* prompt user for which overhead to analyze */

get oh infoo;

/* read and sort data from datafile */
num-entries = sort data(;

/* crunch numbers and display results */
crunch( num entries ;
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/* MEAS.H */
/ ******** **** ** */

/* Header file for performance measurement programs */

/* constants */
#define TIME CONST 1.28 /* 1.28 usec per clock tick */
#define DEBUG OVHD 22 /* 22 usec overhead per call to debug log */
#define ARRAY SIZE 3500
#define INT MAX 2147483647
#define TABLESIZE 11

/* used to indicate measurement mode */
#define NORMAL 0 /* normal mode - no intermediate values to subtract */
#define SUBTRACT 1 /* subtract mode - subtract out given intermediate values */
#define RETRIEVE 2 /* retrieve mode - used when measuring retrieve times '/

#define SIMPLE 3 /* simple mode - don't sort by info field */

/* structure defintions */

struct log-entry [
unsigned short int label;
unsigned short int info;
unsigned time;

};

struct results-entry
float avg; /* average value */
int max; /* maximum value */

int min; /* minimum value */
int num; /* number of samples */
float std; /* standard deviation */
int inf; /* data stored in 'info' field */

e;

extern int st_label;

extern int end label;
extern int mode;
extern int info_min;
extern int infomax;
extern int infoincr;
extern char info str[];
extern char fname[];
extern char oh name[];
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/* MEAS.C
/* *1

/* by Bob Clasen */
/* */

/* 10 Aug 1992 *//********************/*
/* updated 16 Sep 92 to include overall average and overall stand dev */
/* updated 15 Oct 92 to allow program to prompt user for data file name */
/* updated 16 Oct 92 to allow simple crunch and better summary at end 'I
/* updated 28 Jan 93 to allow retrieve data to have proper msg size '/

/* 29 Jan 1993 use info field of second entry, not first */
/* 4 Feb 1993 remove entries with negative times (impl for scoop) */
/* 25 Mar 1993 remove SUBTRACT mode; use global variables */
/* 26 Mar 1993 cleaned up "print results" into separate function */

/* This file contains C functions used by performance measurement programs */

#include <stdio.h>
#include <math.h>
#include <string.h>
#include "meas.h"

float standdev(;
float avgo(;
int max(;
int min(;

/* global data structures shared between 'sort data' and 'crunch' */
int time[ARRAY SIZE];
int info[ARRAYSIZE];

struct results entry results[25];
int numinfo entries;
int overallmax, overall_min;
float overall-avg, overallsd;

/******************** ************ ********

/* sort data */
/****************************************** **

/* This function opens the file containing debug data and reads the
/* requested data into an array. It returns the number of entries
/* in the array. */

int sort data()

struct logentry temp;
int i, j, num entries;
unsigned start time;
int flag, overhead[ARRAYSIZE];
char data fname[20];

FI',E *datafile;

/* open file and check that it's valid */
printf("\n\nEnter name of file containing debug data ('J' f[r u1<,;1.--;.I) . ."):

printf(" . .> ");
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scanf("%s", data fname);
printf("\n\n");
if ((datafname(O] == 'd') && (data fname[l] == '\0'))

strcpy( datafnarne, "debug.dat" );
datafile = fopen (datafname, "r");
if (datafile == NULL) I

printf("ERROR - can't open file %s\n\n", data fname);
exit ();

/* initialize arrays */
for (i = 0; i < ARRAYSIZE; i++)

time[i] = 0;
info[i] = 0;

/* read in data from datafile until EOF */
i = 0;
flag = 0;
while (fscanf(datafile,"%x %x %x\n", &(temp.label), &(temp.info),

&(temp.time)) == 3)
if (temp.label == st_label)

start time = temp.time;
flag = 1;

if ((flag == 1) && (temp.label != endlabel))
/* calculate overhead in making nested debug log calls */
overheadfil = overhead[i] + DEBUGOVHD;

if (temp.label == end label)
info[il = temp.info;

/* calculate delta time in microseconds */
time[i] = (int) ((temp.time - start time)*TIME_CCNST - overhead[-]);

/* throw out any negative times */
if (time[i] > 0)

i++;

overhead[i] = 0;
flag = 0;

/* clean up file */
fclose(datafile);

/* return number of entries */
return(i);

/****************** ** **** **** ** ** **** ****

crunch */
/**************** **************

/* This function crunches the data that was extracted via sort-datao(.
/* It calculates average, max value, min value, and standard deviation.
/* It also displays results on the screen and to a file.

crunch(numentries)

int num entries;
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int loopcount;
int num, total, mintime, maxtime;
int i, j, k;
float avg time, st-dev;
int sd array[ARRAYSIZE];

/* crunch numbers */
if (mode == NORMAL)

loop count = info_min;
k = 0;
while (loop-count <= info-max)

num = 0;
total = 0;
mintime = INT MAX;
maxtime = 0;

for (j = 0; j < num entries; j++)
if (info[j] == (unsigned short int) loop_count)

num = num + 1;

/* calculate total accumulated time */
total = total + time[j];

/* store time in array to be used to calculate standard deviation
sdcarray[num-l] = time[j];

/* determine max and min time */
if (timetj] > maxtime)

maxtime = time[j];
if (time[j] < mintime)

mintime = time[j];

if (num != 0)
/* determine averages and standard deviation
avgtime = total / num;
stdev = standdev( sdcarray, num, avgtime );

/* store results */
results[k].avg = avgtime;
results[kI.max = maxtime;
results[k].min mintime;
results[k].num = num;
results[k].std = st dev;
results[k].inf = loop_count;

/* increment loopcount by the appropriate amount /
loop count = loopcount + infoincr;
k++;

num info entries = k;

/* Calculate overall average and standard deviation */
overallavg = avg( time, numentries);
overall sd = standdev( time, num entries, overall avg);
overall-max = max( time, num-entries);
overall min = min( time, num-entries);

print_results(num entries);
return;
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/* ---- -/
/* */

/* functions used by crunch */
/* ------------------ */

/* --------------------------- /

stand dev */
* ----------------------------- */

/* This function calculates the standard deviation of a data array /

float standdev( darray, size, mean
int darray[];
int size;
float mean;

int i;
float diff, sum;
float st dev;

if (size == 0)
return(0.0);

sum = 0.0;
for (i = 0; i < size; i++)

diff = d-array[i] - mean;
sum = sum + (diff * diff);

St dev = sqrt( sum / size );

return (stdev);

/* -------------------------- */

/* avg */
/* --------------------------- *
/* This function returns the average value of an array of integers *

float avg( d array, size
int darray[];
int size;

Ant i, sum;
float average;

sum = 0;
for (i = 0; i < size; i++)

sum = sum + darray(i];
average = sum / size;

return (average);
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/ * -------- ---- --- ---- ---
1* ~max '

/ * -- - - - -- - - - - - - - - -

/* This function returns the maximum value of an array of integers '

int max( d -array, size
int d-array[];
int size;

int i;
int rnaxtime;

maxtime =0;

for (i =0; i < size; i++)
if (d arrayfi] > maxtime)

maxtime = d_array[i];

return (maxtime);

/*- - - - - - - - - - ---------*

1* ~min*
/*-------------------------------*
/* This function returns the maximum value of an array of integers

mnt min( d -array, size
mnt d-array[];
mnt size;

mnt i;
mnt mintime;

mintime =INTMAX;

for (i =0; i < size; i++)
if (d array~i] < mintime)
mintime = ci_arrayfi];

return (mintime);

/* ----------------------

1* print results *
/*- - - - - - - - - - ---------

print_results (num-entries)

mnt num-entries;

mnt i, j, k;
mnt num;
mnt loop count;
char full -report;
FILE *datafile;

/* open file for results and print some header information
datafile = fopen( fname, "w" );
fprintf(datafile,--------------------------------------------
fprintf(datafile," %s\n', oh name);
fprintf(datafile,'START: %x END: 11x\n",st_ lalbel. end_ i: t-):
fprintf (datafile ------------------------------- n :

fprintf (datafile, " (all times in usec) \n\n");
printf( (-------------------------------------------------\n)
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printf(" %s\n", oh-name);
printf("START: %x END: %x\n",st label, end_ label);
prinif( C------------------------------------------\n)
prinif( "------------RESULTS------------------\n;

printf(" (all times in usec)\n\n");
if (mode == SIMPLE)
print f("\n");

else
/* print summary of results (sorted for NORMAL mode) '
printf( "%7s %10s %10s %10s %10s %l0s\n", info-str, "avq time", "St jev'.'

"max time", "min time", "samples");
fprintf (datafile, "--------SUMMARY OF RESULTS---------- n";
fprintf( datafile,"%7s %10s %10s %10s %10s %10s\n", info_ str, "a5va time",

"std dev", "max time", "min time", "samples" I
for (i = 0; i < num info entries; i++)
fprintf(datafile, "%7d %lO.Of %l0.Of Il10d '10d -.10d \n",reli

results[i].avg, results[i].std, resultslil~ma:.:,

printf("%7d %10.Of %l0.Df %10d %10d %10d \n", resjlts[i] .ir,f.
results[i].avg, results[il.std, results~i].ma:':,

results(il.min, results[il.num I

1* print overall results (for both SIMPLE and NORMAL modes '

printf( "\n\nOVERALL DATA for %s\n\.n", oh name);
fprintf( datafile, "\n\nOVERALL DATA for %-s\n\n", oh name);
printf( "%7s %7s ý7s %7s %9s\n", "avg', "st dev", "max".,"m,"sm:e"
printf( "%7.0f %7.Of %7d %7d %9d\n\n",

overall_avg, overall sd, overall ma::, overaill min,ro'
fprintf( datafile, "%7s 3.7s O7s %7s %9s\n-", "avg", "stde'.","m:,

"min", "samples");
fprintfC datafile, "%7.0f %7.0f '0d %7d '9d\n\n",

overall_avg. overall-sd, overall-max. overall-min, rum-enrtrmes):

/* prompt user to see if full report wanted */
printf ("Do you want each data sample to be written to the file
printf("('y' or 'n')? -- > "..)

scanf("%s", &full-report);

if (full report == 'y')
fprintf (datafile, "\n\nSORTED LISTING OF EACH DATA SAMIPLE\n n)

/k print results to file for SIMPLE mode ~
if (mode == SIMPLE)

fprintf ( datafile, "%7s ll10s\n", "numn", "time");
for (j = 0; j < num entries; j++)

fprintf( datafile, "%7d %l.1d\n", ]-9l, time[]]);
fprintf( datafile, "\n\n");
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else
/* print results to file for NORMAL mode ~
k = 0;
loop count =info min;
while (loopcount <= info max)

fprintf(datafile, '%s %d\n", info -str, loop_count);
fprintf ( datafile, "%7s %l0s\n", "num", 'time");

num = 0;
for (j = 0; j < num entries; j++)

if (info[j] =- (unsigned short int) loop count)I
fprintf(datafile,"%7d %10d \n", num, timetji);

num++;

/* print results to datafile ~
fprintf(datafile --------------------------------------------------- -

fprintf(datafile,"AVG TIME: %.Of usec MAX i-d MIN --d n*
results[k].av~g, results[k].max, results[kj~min);

loop count = loop count + info incr;

fprintf(datafile,"\n\n");

fclose( datafile )
return;
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1* OHINFO.C *

/* This file contains the following functions: /
1* -- initialize set up default parameters for overhead analysis *
/* -- get oh info prompts user to specify which overhead to analyze ~

#include <string.h>
#include "meas.h"

structI
char oh name[151; /*name of this overhead '
int st label;
mnt endi label;
mnt mode;
mnt info min;
mnt info max;
mnt info-incr;
char info_str(l21;
char fname[12];
oh~table(TABLESIZE];

/* ------------- I
/* initialize *

/* ----------------- *

initialize 0

1* scoop parameters *
strcpy(oh~table[O] .oh name, 'SCOOP PKTS");
oh-table[O] .st-label = x7070;
oh-tdble(O] .end-label =Ox7f7f;

oh-table[O].mode = NORMAL;
oh~table[Ol.info -min = 1;
oh~table[O] .info -max = 13;
oh~table(Ol.info -incr = 1;
strcpy(oh~table[O) .info -str, "num pkts");
strcpy(oh~table[G].fname, "scoop.dat');

/* rgdl parameters *1
strcpy(oh~table~l] .oh name, "RG DISP (Ptl)");
oh-table[l].st-label =OxdOdO;

oh_table[lI.end -label Oxdldl;
oh-table[l].mode = NORMAL;
oh~table~l).info -min = 0;
oh-table~l].info-max = 7;
oh_tablell].info -incr = 1;
strcpy(oh_table[1].info -str, "frame");
strcpy(oh_table~l].fname, "rgdl.dat");

/* rgd2 parameters */
strcpy(oh_table[21.oh name, "RG DISP (Pt2)");
oh~table(2J .st -label =Oxd2d2;

oh~table[21 .end -label =Oxd7d7;

oh~table[21.mode = NORMAL;
oh~table[2j.info min = 0;
oh_table[21.info max = 7;
oh~table[21 .lnfo incr = 1;
strcpy(oh~table[2;.1info -str, "frame");
strcpy(oh_table(21.fname, "rgd2.dat");
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1* send queue parameters *
strcpy(oh -table[3] .oh name, "SENDQEJEUE");
oh table[3] .st label = x9090;
oh table(3] .encl-label = x9999;
oh table[31 .mode = NORMAL;
oh table[3].info min = 0;
oh table[3].info max = 11;
oh-table[3].info-incr = 1;
strcpy(oh -table[3].info_str, "pkts sent");
strcpy (oh table(3]. fname, 'send.dat");

/* update queue parameters */
strcpy(oh table[4].oh name, "UPDATEQUEUE");
oh table[4.slae = OX8080;
oh-table[4J.endj label = 0x8989;
oh table[4] .mode = NORMAL;
oh tableE4].info min = 0;
oh table[4l.info max = 11;
oh-table[4].info-incr =1;
strcpy(oh-table[4].info_str, "1pkts sent");
strcpy(oh-tablef4l .fname, "update.dat");

/* fdir(local) parameters */
strcpy(oh -table[51.oh name, "FDIR (local)");
oh table[5] .st label =OxfdOO;

oh table[5] .end label Oxfdof;
oh table[5] .mode = SIMPLE;
oh table(5].lnf0_min = 0;
oh table(51 .info-m-sx =0;
oh-table t5].info-incr =0;
strcpy(oh-table[51.info-str,"
strcpy (oh table[5] .fname, "fdir.dat");

/* iod paramebors */
strcpy (oh table[6] .oh name, "10 DISPATCHER"):
oh table[E] .st label =OxcOcO;

oh-table[61.end-label =Oxcfcf;

oh taldle[6J .mode = SIMPLE;
oh-table[6].infc' min = 0;
oh table[6].info max = 0;
oh-table[6].info-incr =0;
strcpy(oh-table[6].info-str,"
strcpy (oh table[6] .fname, "iod.dat");

/* iosc parameters */
strcpy (oh -table[7] .oh name, "1O SRCE CONG');
oh table[71.st label = x6060;
oh-table[7i .endi-label 0x6969;
oh table[7].mode = SIMPLE;
oh tabie[7].info min = C;

oh table[7].info-max = 0;
oh-tableE7].info-incr =0;
strcpy(oh-table[7].info-str,"
strcpy(oh-table(7] .fname, "iosc.dat");

/* iop parameters */
strcpy (oh -table(8] .oh name, "10 PROC TASK");
oh table[81.st_ label =Ox~a~a;

oh table[S1.end label =Ox~f~f;

oh table[8].mode = SIMPLE;
oh rtable[8].info min = 0;
oh table(8].info max = 0;
oh-table[8].info in(-r -0;
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strcpy(oh-table[8].info-str,"
strcpy(oh-table[81 .fname, "iop.dat");

/* queue parameters */
strcpy(oh -table[9].oh name, 'QUEUEMSG");
oh table(91.st label =Oxflfl;

oh--table[9) .endý-label =Oxf2f2;

oh-table[9] .mode = NORMAL;
oh table[9].info min = 0;
oh-table[9].info-max = 1000;
oh-table[9] .info-incr =100;
strcpy(oh-table[9] .info-str, "size');
strcpy (oh table[9] .fname, "q.dat");

/* retrieve parameters */
stropy (oh -table[lO] .oh-name, "RETRIEVE-MSG");
oh table[l0].st-label Oxf5f5;
oh table[10].end label Oxf6f6;
oh table[10].mocle = NORMAL;
oh table[l0].info min = 0;
oh table[10].info max = 1000;
oh-table[10].info-incr = 100;
strcpy(oh-table[l0].info-str, "size");
strcpy(oh-table[lO].fname, "retr.dat");

return;

/*------------------*

1* get_oh -info *
/* -------------- /

get_oh_info()

mnt i;
mnt selection;
mnt parameter;

/* prompt user to select which overhead to analyze *

printf("\n\nDEF'AULT OVERHEAD ANALYSIS PARAMETERS\n");
printf ------"---------------------- n")

printf("%4s %9s %9s %5s %5s %6s %6s\n", "Num", "Name", "Start", "End",
"Min", "Max", "Incr");

for (i = 0; i < TABLESIZE; i++)
printf("%4d %13s %5x %5x ", i, oh-table [1).oh-name, o~alK s ae

oh table(iI.end label);
if (oh table~i] .mode == NORMAL)
printf("%4d %6d %4d\n", oh -table[i] .info mmn, oh-rableri] .infc-ma::,

oh -tableti].info incr);
else

printf ("\n");

printf("%4d Modify default parameters or use new parametersý;.-",

printf("\nEnter the selection number-- ";

scanf("%d", &selection);
printf ("\n");
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/* copy selected parameters into global variables •/
if (selection != TABLE SIZE) { /* use default values '/

strcpy(ohname, oh table[selection).ohname);
st label = oh table[selection].st label;
end label = ohtable[selection] .end label;
mode = oh table[selectionl.mode;
info min = oh table[selection].info mmn;
info_max = oh tablelselection).infomax;
info incr = oh_table[selection] .info incr;
strcpy(info str, oh_table[selection].info str);
strcpy(fname, oh table[selection].fname);-

else { /* modify default parameters or prompt for new ones */
printf("\nEnter the number of OH whose parameters should change -- >
scanf("%d", &selection);

strcpy(ohname, oh table[selection] .oh name);
st label = oh table[selection].stlabel;
end label = ohtable[selection .end label;
mode = oh table[selectionj.mode;
info min = ohtable[selectionl.info_min;
infomax = ohtable[selection].infomax;
info-incr = oh table[selection .info incr;
strcpy(info str, ohtable[selection]yinfo str);
strcpy(fname, oh table[selectionl.fname);

/* prompt for which parameters to change */
parameter = 10;
while (parameter != 0)

printf("\n\nCurrent Parameters for %s\n", oh table~selection~ .cn name);
printf("1. oh name %s\n", oh name);
printf("2. start label %x\n", st label);
printf("3. end label %x\n", endlabel);
printf("4. info min %d\n", info min);
printf("5. info-max %d\n", info_max);
printf("6. info incr %d\n", infoincr);
printf("7. info str %s\n", info str);
printf("8. fname %s\n", fname);
printf("Enter the parameter number ('0' when done) -- >
scanf("%d", &parameter);

switch (parameter)
case 0:

break;
case 1:

printf("New oh name -- > ");
scanf ("%s", oh name);
break;

case 2:
printf ("New start label -- > ");
scanf("%x', &st label);
break;

case 3:
printf("New end label -- > ");
scanf ("%x", &end-label);
break;

case 4:
printf("New info mn -- > ");
scanf("%d", &info min);
break;
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case 5:
printf("New info max-> ")

scanf("%d", &info max);
break;

case 6:
printf("New info incr-> ";

scanf("%d", &info-incr);
break;

case 7:
printf ("New info_sir-> ")

scanf ("%s", info sir);
break;

case 8:
printf ("New fname-> ")

scanf("%s", fname);
break;

default:
printf ("Selection was invalid \n");

return;
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